Membranes for Membrane Reactors -  - E-Book

Membranes for Membrane Reactors E-Book

0,0
155,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

A membrane reactor is a device for simultaneously performing a reaction and a membrane-based separation in the same physical device. Therefore, the membrane not only plays the role of a separator, but also takes place in the reaction itself.

This text covers, in detail, the preparation and characterisation of all types of membranes used in membranes reactors. Each membrane synthesis process used by membranologists is explained by well known scientists in their specific research field.

The book opens with an exhaustive review and introduction to membrane reactors, introducing the recent advances in this field. The following chapters concern the preparation of both organic and inorganic, and in both cases, a deep analysis of all the techniques used to prepare membrane are presented and discussed. A brief historical introduction for each technique is also included, followed by a complete description of the technique as well as the main results presented in the international specialized literature. In order to give to the reader a summary look to the overall work, a conclusive chapter is included for collecting all the information presented in the previous chapters.

Key features:

  • Fills a gap in the market for a scientific book describing the preparation and characterization of all the kind of membranes used in membrane reactors
  • Discusses an important topic - there is increasing emphasis on membranes in general, due to their use as energy efficient separation tools and the ‘green’ chemistry opportunities they offer
  • Includes a review about membrane reactors, several chapters concerning the preparation organic, inorganic, dense, porous, and composite membranes and a conclusion with a comparison among the different membrane preparation techniques

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1213

Veröffentlichungsjahr: 2010

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Title Page

Copyright

Contributors

Glossary

Greek Symbols

Subscripts or Superscripts

Acronyms

Introduction – A Review of Membrane Reactors

1 Introduction

2 Membranes for Membrane Reactors

3 Salient Features of Membrane Reactors

4 Hydrogen Production by Membrane Reactors

5 Other Examples of Membrane Reactors

6 Membrane Bioreactor

7 Conclusion

References

Chapter 1: Microporous Carbon Membranes

1.1 Introduction

1.2 Transport Mechanisms in Carbon Membranes

1.3 Methods for the Preparation of Microporous Carbon Membranes

1.4 Membrane Modules

1.5 Applications of Membranes in Membrane Reactor Processes

1.6 Final Remarks and Conclusions

References

Chapter 2: Metallic Membranes by Wire Arc Spraying: Preparation, Characterisation and Applications

2.1 Introduction

2.2 Thermal Spraying

2.3 Preparation of Membranes

2.4 Characterisation of Prepared Metallic Membrane

2.5 Applications of Prepared Metallic Membrane

2.6 Final Remarks and Conclusions

References

Chapter 3: Inorganic Hollow Fibre Membranes for Chemical Reaction

3.1 Introduction

3.2 Preparation of Inorganic Hollow Fibre Membranes

3.3 Coating of Pd/Ag Membranes

3.4 Catalyst Impregnation

3.5 Application in Chemical Reaction

3.6 Final Remarks and Conclusions

3.7 Acknowledgements

References

Chapter 4: Metallic Membranes Prepared by Cold Rolling and Diffusion Welding

4.1 Introduction

4.2 Preparation Method

4.3 Applications

4.4 Conclusions

References

Chapter 5: Preparation and Synthesis of Mixed Ionic and Electronic Conducting Ceramic Membranes for Oxygen Permeation

5.1 Introduction

5.2 Preparation of MIEC Ceramic Powders

5.3 Preparation of MIEC Membranes

5.4 Example Applications of MIEC Membranes for the Partial Oxidation of Methane

5.5 Final Remarks and Conclusions

5.6 Acknowledgements

References

Chapter 6: Nanostructured Perovskites for the Fabrication of Thin Ceramic Membranes and Related Phenomena

6.1 Introduction

6.2 Support

6.3 Selection of Ceramics with High Oxygen Mobility

6.4 Synthesis of Ceramics with Required Ts and a High Oxygen Permeability

6.5 Combination of Compatible Materials and Operations

6.6 Design of Catalyst for Selective Reforming of Methane to Syngas

6.7 Conclusion

6.8 Acknowledgement

References

Chapter 7: Nanostructured Perovskites for the Fabrication of Thin Ceramic Membranes and Related Phenomena

Introduction

7.2 Experimental

7.3 Results and Discussion

7.4 Conclusion

7.5 Acknowledgement

References

Chapter 8: Zeolite Membrane Reactors

8.1 Introduction

8.2 Zeolite Membrane Preparation Outlines

8.3 Detailed Preparation Method of a Zeolite Membrane

8.4 Types of Zeolite Membrane Reactors

8.5 Concluding Remarks

References

Chapter 9: Metal Supported and Laminated Pd-Based Membranes

9.1 Introduction

9.2 Preparation Method

9.3 Applications

9.4 Conclusions

References

Chapter 10: PVD Techniques for Metallic Membrane Reactors

10.1 Introduction

10.2 Physical Vapour Deposition Techniques

10.3 Pd-Based Metallic Membranes

10.4 Conclusions

References

Chapter 11: Membranes Prepared via Electroless Plating

11.1 Introduction

11.2 Description of the Electroless Plating Process

11.3 Morphology of Palladium Deposits

11.4 Pd-Alloy Preparation

11.5 Membrane Performances and Integration in Membrane Reactors

11.6 Conclusions

References

Chapter 12: Silica Membranes – Preparation by Chemical Vapour Deposition and Characteristics

12.1 Introduction

12.2 Fundamentals of Chemical Vapour Deposition

12.3 CVD Apparatus

12.4 Silica H-Membranes Produced by CVD

12.5 Silica Membrane Structure and Transport Mechanism

12.6 Hydrothermal Stability of Silica Membranes

12.7 Examples of Silica Membrane Application

12.8 Conclusions

References

Chapter 13: Membranes Prepared via Molecular Layering Method

13.1 Introduction

13.2 Molecular Layering: Principles, Synthesis Possibilities and Fields of Application

13.3 Optimisation of MR Structure and Catalytic Properties by the ML Method

References

Chapter 14: Solvated Metal Atoms in the Preparation of Catalytic Membranes

14.1 Introduction

14.2 Preparation of Catalytic Membranes

14.3 Catalytic Exploitation

14.4 Conclusions

References

Chapter 15: Electrophoretic Deposition for the Synthesis of Inorganic Membranes

15.1 Introduction

15.2 State of the Art

15.3 Experimental

15.4 Discussion and Applications

15.5 Conclusions

15.6 Acknowledgements

References

Chapter 16: Electrochemical Preparation of Nanoparticle Deposits: Application to Membranes and Catalysis

16.1 Introduction

16.2 State of the Art

16.3 Experimental

16.4 Discussion and Applications

16.5 Conclusions

16.6 Acknowledgements

References

Chapter 17: Electrochemical Preparation of Pd Seeds/Inorganic Multilayers on Structured Metallic Fibres

17.1 Introduction

17.2 Brief Review on Preparation Method

17.3 Explanation of the Proposed Preparation Method

17.4 Multilayer Preparation on Metal Substrates

17.5 Final Remarks and Conclusion

References

Chapter 18: Membranes Prepared Via Spray Pyrolysis

18.1 Introduction

18.2 Spray Pyrolysis Material Preparation Method

18.3 Selected Membranes Prepared Via Spray Pyrolysis Coating Method

18.4 Catalyst Synthesis and Spread in PEMFC

18.5 Remarks and Perspectives

18.6 Acknowledgements

References

Chapter 19: Silica Membranes – Preparation and Characterisation of Nanocrystalline and Quasicrystalline Alloys by Planar Flow Casting for Metal Membranes

19.1 Introduction

19.2 Properties and Preparation of Nanocrystalline and Quasicrystalline Metals

19.3 Preparation of Nanocrystalline and Quasicrystalline Metal Membranes by Planar Flow Casting

19.4 Nanocrystalline and Quasicrystalline Metal Membranes for Hydrogen Separation

19.5 Concluding Remarks

References

Chapter 20: Silica Membranes – Preparation and Characterisation of Amorphous Alloy Membranes

20.1 Introduction

20.2 Brief Review of Preparation Methods

20.3 Experimental Procedure

20.4 Hydrogen Permeation of Ni-Nb-Zr Amorphous Alloy Membranes

20.5 Hydrogen Production by Methanol Steam Reforming Using Melt-Spun Ni-Nb-Ta-Zr-Co Amorphous Alloy Membrane

20.6 Final Remarks and Conclusions

References

Chapter 21: Membranes Prepared Via Phase Inversion

21.1 Introduction

21.2 Brief Review

21.3 Explanation of the Phase Inversion Process

21.4 Some Applications

21.5 Conclusions

References

Chapter 22: Porous Flat Sheet, Hollow Fibre and Capsule Membranes by Phase Separation of Polymer Solutions

22.1 Introduction

22.2 Porous Polymeric Membranes Classification

22.3 Polymers for Porous Membranes

22.4 Polymeric Membrane Preparation Via Phase Separation

22.5 Industrial Manufacturing of Porous Polymeric Membranes

22.6 Applications in Membrane Reactor Processes

22.7 Conclusions and Outlook

References

Chapter 23: Porous Polymer Membranes by Manufacturing Technologies other than Phase Separation of Polymer Solutions

23.1 Introduction

23.2 Technologies Based on Extrusion of Polymer Films

23.3 Electrospinning of Porous Polymer Membranes

23.4 In Situ Polymerisation of Porous Membranes

23.5 Surface and Pore Functionalised Membranes

23.6 Overview on Technical Porous Polymeric Membranes

23.7 Applications in Membrane Reactor Processes

23.8 Conclusions and Outlook

23.9 Acknowledgements

References

Chapter 24: Palladium-Loaded Polymeric Membranes for Hydrogenation in Catalytic Membrane Reactors

24.1 Introduction

24.2 Synthesis and Hydrogenation Studies

24.3 Characterisation of Palladium Nanoparticles in Catalytic Membranes

24.4 Kinetic Studies

24.5 Conclusions

24.6 Acknowledgement

References

Chapter 25: Membrane Prepared via Plasma Modification

25.1 Introduction

25.2 Membrane Treatment with Microwave Plasma

25.3 Modes of Plasma Use

25.4 Plasma of Nonpolymerisable Gas

25.5 Plasma of Polymerisable Species

25.6 Plasma-Induced Grafting

References

Chapter 26: Enzyme-Immobilised Polymer Membranes for Chemical Reactions

26.1 Introduction

26.2 Brief Review of the Preparation Method of Enzyme-Immobilised Polymer Membranes

26.3 Preparation of Enzyme-Immobilised Polymer Membranes

26.4 Applications of Enzyme-Immobilised Polymer Membranes as Membrane Reactors

26.5 Final Remarks and Conclusions

References

Final Remarks

1 Introduction

2 Membranes for Membrane Reactors

3 Epilogue

References

Color Plates

Index

This edition first published 2011

© 2011 John Wiley & sons

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained here in may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Membranes for membrane reactors : preparation, optimization, and selection / [edited by] Angelo Basile, Fausto Gallucci.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-74652-3 (hardback)

1. Membrane reactors. I. Basile, Angelo (Angelo Bruno) II. Gallucci, Fausto.

TP248.25.M45M46 2011

6600′.2832–dc22

2010044313

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470746523

ePDF ISBN 9780470977552

oBook ISBN: 9780470977569

ePub ISBN: 9780470977576

Contributors

J. Arias-Pardilla, Centro de Electroquímica y Materiales Inteligentes, Universidad Politécnica de Cartagena, Cartagena, Spain

A. Basile, Institute on Membrane Technology, CNR, c/o University of Calabria, Rende, CS, Italy

F. Basile, Università di Bologna, Bologna, Italy

N. L. Basov, Topchiev Institute of Petrochemical Synthesis, Moscow, Russia

P. Benito, Università di Bologna, Bologna, Italy

A. Berenguer-Murcia, Universidad de Alicante, Departamento de Química Inorgánica, Alicante, Spain

M. Broglia, ERSE S.p.A., Milano, Italy

R. S. Brusa, Dipartimento di Fisica, Università di Trento, Trento, Italy

M. Bryjak, Department of Polymer and Carbon Materials, Wroclaw University of Technology, Wroclaw, Poland

M. G. Buonomenna, Department of Material and Chemical Engineering, University of Calabria and Consortium INSTM, Rende, CS, Italy

G. Capannelli, Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy

D. Cazorla-Amorós, Universidad de Alicante, Departamento de Química Inorgánica, Alicante, Spain

R. Checchetto, Dipartimento di Fisica, Università di Trento, TN, Italy

S.-H. Choi, Institute on Membrane Technology, ITM-CNR, c/o University of Calabri, Rende, CS, Italy; and Green Chemistry and Environmental Biotechnology, University of Science and Technology, Daejeon, Korea

P. Daraei, Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran

E. Drioli, Institute on Membrane Technology/Department of Material and Chemical Engineering, ITM-CNR, c/o University of Calabria, Rende CS Italy

S. D. Dubrovensky, St. Petersburg State Institute of Technology, St. Petersburg, Russia

M. M. Ermiloa, Topchiev Institute of Petrochemical Synthesis, Moscow, Russia

C. Evangelisti, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy

G. Fornasari, Università di Bologna, Bologna, Italy

F. Galiano, Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Rende CS, Italy

F. Gallucci, Chemical Process Intensification, Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

J. Galuszka, Natural Resources Canada, CanmetENERGY, Ontario, Canada

I. Gancarz, Department of Polymer and Carbon Materials, Wroclaw University of Technology, Wroclaw, Poland

M. A. Gibson, CSIRO Materials Science and Engineering, Clayton, Victoria, Australia

T. Giddings, Natural Resources Canada, CanmetENERGY, Ontario, Canada

L. Guo, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, PR China

F. I. Hai, Environmental Engineering, The University of Wollongong, New South Wales, Australia

K. Haraya, Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

A. Inoue, Institute for Materials Research, Tohoku University, Sendai, Japan.

B. F. K. Kingsbury, Department of Chemical Engineering, Imperial College London, London, UK

S. Kurungot, Physical and Materials Chemistry Division, National Chemical Laboratory, Pune, India

V.I. Lebedeva, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

K. Li, Department of Chemical Engineering, Imperial College London, London, UK

M. Li, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, PR China

A. Linares-Solano, Universidad de Alicante, Departamento de Química Inorgánica, Alicante, Spain

S. S. Madaeni, Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran

A. A. Malkov, St. Petersburg State Institute of Technology, St. Petersburg, Russia

A. A. Malygin, St. Petersburg State Institute of Technology, St. Petersburg, Russia

M. Menéndez, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain

S. V. Mikhaylovskiy, St. Petersburg State Institute of Technology, St. Petersburg, Russia

A. Miotello, Dipartimento di Fisica, Università di Trento, Trento, Italy

M. Monti, Università di Bologna, Bologna, Italy

E. Morallón, Universidad de Alicante, Departamento de Química Física and Instituto Universitario de Materiales, Alicante, Spain

A. P. Nemudry, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia

R. O'Hayre, Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, USA

N. V. Orekhova, Topchiev Institute of Petrochemical Synthesis, Moscow, Russia

N. Panziera, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy

I. V. Petrova, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

J. W. Phair, Division of Fuel Cells and Solid State Chemistry, Ris National Laboratory for Sustainable Energy, The Technical University of Denmark, Roskilde, Denmark

P. Pinacci, ERSE S.p.A., Milano, Italy

E. Pitzalis, CNR, Institute of Chemical and Physical Processes, Pisa, Italy

V. I. Roldughin, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

V. A. Sadykov, Boreskov Institute of Catalysis, SB RAS, Novosibirsk, Russia

E. Scavetta, Università di Bologna, Bologna, Italy

R. Sennen Brusa, Dipartimento di Fisica, Università di Trento, Trento, Italy

H. Susanto, Lehrstuhl für Technische Chemie II, Universitlsquät Duisburg-Essen, Essen, Germany; and Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia

C. Téllez, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain

G. F. Tereshchenko, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

M. Tonelli, Università di Bologna, Bologna, Italy

J. Tong, Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, USA

S. Tosti, ENEA, Dipartimento FPN, CR ENEA Frascati, Frascati (RM), Italy

M. Ulbricht, Lehrstuhl für Technische Chemie II, Universitlsquät Duisburg-Essen, Essen, Germany

T. Uragami, Faculty of Chemistry, Materials and Bioengineering Kansai University Suita, Osaka, Japan

A. Vaccari, Università di Bologna, Bologna, Italy

F. Varela-Gandía, Universidad de Alicante, Departamento de Química Inorgánica, Alicante, Spain

G. Vitulli, Advanced Catalysts Srl, Pisa, Italy

V. V. Volkov, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

Z. Wu, Department of Chemical Engineering, Imperial College London, London, UK

T. Yamaguchi, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan

S. Yamaura, Institute for Materials Research, Tohoku University, Sendai, Japan

M. Yoshimune, Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

V. V. Zyryanov, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia

Glossary

Nomenclature

A

membrane area (m2)

b

Langmuir adsorption parameter (kPa−1)

bo

Langmuir pre-exponential parameter (kPa−1)

Biot number ()

dimensionless i component concentration

i component concentration ()

specific heat of the component i ( or )

gas mixture specific heat ()

Damköhler number

effective diffusivity in the solid particle ()

effective axial mass diffusivity ()

effective radial mass diffusivity ()

equivalent particle diameter (m)

internal tubular reactor diameter (m)

apparent activation energy ()

friction factor

Fsweep

sweeping gas flow rate ()

FTOT

inlet total gas mixture flow rate ()

G

Gibbs free energy ()

heat transport coefficient between gas and solid phase ()

i component enthalpy in permeation zone ()

i component enthalpy in reaction zone ()

heat of reaction, j ()

forced convection heat transport coefficient in the permeation zone ()

heat transport coefficient near the tube wall ()

wall heat transport coefficient for the fluid phase ()

wall heat transport coefficient for the solid phase ()

i component flux through the membrane ()

adsorption equilibrium constant of the component i (kPa−1)

rate constant of reaction j (depends on reaction)

equilibrium constant of reaction j

membrane thermal conductivity ()

tube wall conductivity ()

reactor length (m)

molecular weight of the component i ()

average molecular weight of the gas mixture ()

pressure (kPa)

dimensionless pressure in the reaction zone

pressure drop along the reactor (kPa)

inlet pressure (kPa)

permeability coefficient ()

permeability pre-exponential factor ()

axial Peclèt number

critical Peclèt number

radial mass Peclèt number ()

i component partial pressure (kPa)

i component partial pressure on the permeate (downstream) side (kPa)

i component partial pressure on the retentate (upstream) side (kPa)

i component partial pressure on the catalyst surface (kPa)

Prandtl number ()

Prandtl number in the permeation (downstream) zone

heat flux through the membrane ()

heat flux through the walls ()

radial coordinate (m)

radial dimensionless coordinate

universal gas constant ()

Reynolds number

Reynolds number referred to catalyst particle diameter ()

Reynolds number in the permeation (downstream) zone

reaction rate of component i in reaction j ( or )

Schmidt coefficient ()

ss

specific surface area of metal

Stanton number

steam to carbon ratio

temperature (K)

normal boiling temperature of component i (K)

inlet temperature (K)

membrane temperature (K)

wall temperature (K)

overall heat transport coefficient ()

gas superficial velocity ()

pellet volume (m3)

reactor volume (m3)

w

halfwidth of diffraction peaks

apparent residence time ()

i component conversion

molar fraction of component i

overall yield to species i

axial coordinate (m)

axial dimensionless coordinate

Greek Symbols

α

perm-selectivity

membrane thickness (m)

void fraction of packing

effectiveness factor

effectiveness factor of reaction j

θ

angular position of X-ray reflection

λ

wavelength (m)

effective thermal conductivity in the solid particle ()

effective axial thermal conductivity ()

effective radial thermal conductivity ()

gas phase thermal conductivity ()

thermal conductivity of the component i ()

thermal conductivity of packing material ()

radial coordinate inside the particle (m)

gas mixture viscosity ()

viscosity of the component i ()

catalytic bed density ()

gas density ()

ρm

weight concentration of metals in the solution (g l−1)

catalyst density ()

fugacity coefficient of species i in the gas mixture (kPa)

mean free path (m)

thermodynamic correction factor (−)

Subscripts or Superscripts

app

apparent

eff

effective parameter

g

gas translational

i

component in mixture

j

reaction number

s

surface

sat

saturation

SM

Stefan–Maxwell

Acronyms

AR

melamine-formaldehyde resin

CA

cellulose acetate

CM

catalytic membrane

CMC

catalytic membrane contactors

CMR

catalytic membrane reactor

DMF

N,N-dimethylformamide

DO

dissolved oxygen

EC

ethyl cellulose

MC-CN

deposition of Pd onto outer surface of membrane in continuous regimes

MC-CS

deposition of Pd onto outer surface of membrane in consecutive regimes

MR

membrane reactor

NMP

N-methyl-2-pyrrolidone

PAA

polyacrilic acid

PAI

poly(amide imide)

PAN

polyacrylonitrile

pCM

polymeric catalytic membrane

PDMS

poly(dimethylsiloxane)

PEBA

poly(ether-b-amide)

PEI

polyetherimide

PEMFC

polymer electrolyte membrane fuel cell

PES

polyether sulfone

PP

polypropylene

ppb

parts per billion

ppm

parts per million

PPO

poly(2,6-dimethyl-1,4phenylene oxide)

PSF

polysulfone

PVDF

polyvinylidene

PVP

poly(vinylpyrrolidone)

THF

tetrahydrofurane

TR

traditional reactor (reactor without membranes)

WHSV

weight hourly space velocity

Introduction – A Review of Membrane Reactors

Fausto Gallucci1, Angelo Basile2, Faisal Ibney Hai3

1Chemical Process Intensification, Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands 2Institute on Membrane Technology, CNR, c/o University of Calabria, Rende, CS, Italy 3Environmental Engineering, The University of Wollongong, New South Wales, Australia

1 Introduction

In recent decades, membrane catalysis has been studied by several research groups, and significant progress in this field is summarised in several review articles [7, 143, 146, 154, 194, 195, 202].

Considering a IUPAC definition [131], a membrane reactor (MR) is a device for simultaneously performing a reaction (steam reforming, dry reforming, autothermal reforming, etc.) and a membrane-based separation in the same physical device. Therefore, the membrane not only plays the role of a separator, but also takes place in the reaction itself. The term membrane bioreactor (MBR), however, refers to the coupling of biological treatment with membrane separation in contrast to the sequential application of membrane separation downstream of classical biotreatment [117, 237]. This introduction comprises a review of both MR (Sections 2–5) and MBR (Section 6).

2 Membranes for Membrane Reactors

The membranes can be classified according to their nature, geometry and separation regime. In particular, they can be classified into organic, inorganic and organic/inorganic hybrids.

The choice of membrane type to be used in MRs depends on parameters such as the productivity, separation selectivity, membrane life time, mechanical and chemical integrity at the operating conditions and, particularly, the cost.

The discovery of new membrane materials was the key factor for increasing the application of the membrane in the catalysis field. The significant progress in this area is reflected in an increasing number of scientific publications, which have grown exponentially over the past few years, as shown by McLeary . [154].

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!