Metals in Cells -  - E-Book

Metals in Cells E-Book

0,0
167,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Over the last three decades a lot of research on the role of metals in biochemistry and medicine has been done. As a result many structures of biomolecules with metals have been characterized and medicinal chemistry studied the effects of metal containing drugs.

This new book (from the EIBC Book Series) covers recent advances made by top researchers in the field of metals in cells [the “metallome”] and include:  regulated metal ion uptake and trafficking, sensing of metals within cells and across tissues, and identification of the vast cellular factors designed to orchestrate assembly of metal cofactor sites while minimizing toxic side reactions of metals. In addition, it features aspects of metals in disease, including the role of metals in neuro-degeneration, liver disease, and inflammation, as a way to highlight the detrimental effects of mishandling of metal trafficking and response to "foreign" metals. With the breadth of our recently acquired understanding of metals in cells, a book that features key aspects of cellular handling of inorganic elements is both timely and important. At this point in our understanding, it is worthwhile to step back and take an expansive view of how far our understanding has come, while also highlighting how much we still do not know.

The content from this book will publish online, as part of EIBC in December 2013, find out more about the Encyclopedia of Inorganic and Bioinorganic Chemistry, the essential online resource for researchers and students working in all areas of inorganic and bioinorganic chemistry.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1994

Veröffentlichungsjahr: 2013

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



EIBC Books

Application of Physical Methods to Inorganic and Bioinorganic Chemistry

Edited by Robert A. Scott and Charles M. Lukehart

ISBN 978-0-470-03217-6

Nanomaterials: Inorganic and Bioinorganic Perspectives

Edited by Charles M. Lukehart and Robert A. Scott

ISBN 978-0-470-51644-7

Computational Inorganic and Bioinorganic Chemistry

Edited by Edward I. Solomon, R. Bruce King and Robert A. Scott

ISBN 978-0-470-69997-3

Radionuclides in the Environment

Edited by David A. Atwood

ISBN 978-0-470-71434-8

Energy Production and Storage: Inorganic Chemical Strategies for a Warming World

Edited by Robert H. Crabtree

ISBN 978-0-470-74986-9

The Rare Earth Elements: Fundamentals and Applications

Edited by David A. Atwood

ISBN 978-1-119-95097-4

Metals in Cells

Edited by Valeria Culotta and Robert A. Scott

ISBN 978-1-119-95323-4

Forthcoming

Metal-Organic Framework Materials

Edited by Leonard R. MacGillivray and Charles M. Lukehart

ISBN 978-1-119-95289-3

The Lightest Metals

Edited by Timothy P. Hanusa

ISBN 978-1-11870328-1

Sustainable Inorganic Chemistry

Edited by David A. Atwood

ISBN 978-1-11870342-7

Encyclopedia of Inorganic and Bioinorganic Chemistry

The Encyclopedia of Inorganic and Bioinorganic Chemistry (EIBC) was created as an online reference in 2012 by merging the Encyclopedia of Inorganic Chemistry and the Handbook of Metalloproteins. The resulting combination proves to be the defining reference work in the field of inorganic and bioinorganic chemistry. The online edition is regularly updated and expanded. For information see:

www.wileyonlinelibrary.com/ref/eibc

This edition first published 2013

© 2013 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Metals in cells / editors, Valeria Culotta, Robert A. Scott.

p. ; cm.

Includes bibliographical references and index.

ISBN 978-1-119-95323-4 (cloth)

I. Culotta, Valeria. II. Scott, Robert A., 1953-

[DNLM: 1. Cell Physiological Phenomena. 2. Chemistry, Inorganic. 3. Metals. QU 375]

QP532

612'.01524--dc23

2013013974

Encyclopedia of Inorganic and Bioinorganic Chemistry

Editorial Board

Editor-in-Chief

Robert A. Scott

University of Georgia, Athens, GA, USA

Section Editors

David A. Atwood

University of Kentucky, Lexington, KY, USA

Timothy P. Hanusa

Vanderbilt University, Nashville, TN, USA

Charles M. Lukehart

Vanderbilt University, Nashville, TN, USA

Albrecht Messerschmidt

Max-Planck-Institute für Biochemie, Martinsried, Germany

Robert A. Scott

University of Georgia, Athens, GA, USA

Editors-in-Chief Emeritus & Senior Advisors

Robert H. Crabtree

Yale University, New Haven, CT, USA

R. Bruce King

University of Georgia, Athens, GA, USA

International Advisory Board

Michael Bruce

Adelaide, Australia

Tristram Chivers

Calgary, Canada

Valeria Culotta

MD, USA

Mirek Cygler

Saskatchewan, Canada

Marcetta Darensbourg

TX, USA

Michel Ephritikhine

Gif-sur-Yvette, France

Robert Huber

Martinsried, Germany

Susumu Kitagawa

Kyoto, Japan

Leonard R. MacGillivray

IA, USA

Thomas Poulos

CA, USA

David Schubert

CO, USA

Edward I. Solomon

CA, USA

Katherine Thompson

Vancouver, Canada

T. Don Tilley

CA, USA

Karl E. Wieghardt

Mülheim an der Ruhr, Germany

Vivian Yam

Hong Kong

Table of Contents

Contributors

Series Preface

Volume Preface

Part 1: Introduction

Mechanisms Controlling the Cellular Metal Economy

1 Introduction

2 Understanding the Cellular Metallome

3 Moving Metals Across Cellular Membranes

4 Insights into Iron, Copper, and Zinc Homeostases

5 Role of Transition Metals in Differentiation and Development

6 High Metal Quotas in Specialized Cells: Pathogens that Stand Out

7 Concluding Remarks

8 Acknowledgments

9 Abbreviations and Acronyms

10 References

Part 2: Probing Metals and Cross Talk in the Metallome

The Metallome

1 Introduction

2 Copper

3 Molybdenum

4 Nickel and Cobalt

5 Other Metals

6 Ionomics

7 Concluding Remarks

8 Acknowledgments

9 Abbreviations and Acronyms

10 References

Cyanobacterial Models that Address Cross-Talk in Metal Homeostasis

1 Introduction

2 The Challenge of Metal Mal-Occupancy of Proteins

3 Periplasmic MncA and CucA: Experimental Evidence that Metal Availability at Protein Folding can Dominate Speciation

4 Copper-Chaperone Atx1 Inhibits Deleterious Side Reactions of Copper

5 Revisiting the Roles of Amino-Terminal Domains of P1-Type ATP in Metal Specificity

6 Metals Partition onto Many Pathways in Synechocystis PCC 6803

7 Mechanisms of Specificity in Metal Sensors that do not Solely Rely on Affinity

8 Polydisperse Metal Buffers and the Associative Cell Biology of Metals

9 Acknowledgments

10 Abbreviations and Acronyms

11 References

Sparing and Salvaging Metals in Chloroplasts

1 Introduction

2 Metal Sparing and Salvaging within the Chloroplast

3 Back-Ups

4 Reference Organisms for Sub-Cellular Metal Sparing and Salvaging

5 Copper

6 Iron

7 Zinc

8 Acknowledgments

9 Abbreviations and Acronyms

10 References

Fluorescent Probes for Monovalent Copper

1 Introduction

2 Thermodynamic Stability of Monovalent Copper

3 Synthetic Cu(I)-Responsive Fluorescent Probes

4 Genetically Encoded Cu(I)-Responsive Fluorescent Probes

5 Perspective

6 Acknowledgments

7 Related Articles

8 Abbreviations and Acronyms

9 References

Fluorescent Zinc Sensors

1 Introduction

2 Classes of Fluorescent Sensors for Zinc

3 Localized Zinc Sensors

4 Using Sensors for Quantification of Zinc

5 Important Controls when Using Sensors for Quantification

6 Acknowledgments

7 Abbreviations and Acronyms

8 References

X-Ray Fluorescence Microscopy

1 Introduction

2 Physical Principles of X-Ray Fluorescence

3 Experimental Considerations

4 Data Analysis

5 Examples

6 Chemical Speciation

7 Summary and Future Prospects

8 Abbreviations and Acronyms

9 References

Part 3: Moving Metals in Cells

Iron and Heme Transport and Trafficking

1 Introduction

2 Cellular-Iron Import

3 Mitochondrial-Iron Metabolism

4 Coordination of Cellular Metabolism and Iron Homeostasis

5 Iron Export

6 Porphyrin and Heme Transport

7 Conclusions

8 Acknowledgments

9 Abbreviations and Acronyms

10 References

Iron in Plants

1 Introduction

2 The Reduction Strategy

3 The Chelation Strategy

4 Transcriptional Regulation of the Strategy I Response

5 Transcriptional Regulation of the Strategy II Response

6 Long Distance Iron Transport

7 Subcellular Iron Transport

8 Biofortification

9 Related Articles

10 Abbreviations and Acronyms

11 References

Transport of Nickel and Cobalt in Prokaryotes

1 Introduction

2 Primary Active Uptake of Ni2+ and Co2+ Ions

3 Secondary Active Uptake of Ni2+ and Co2+ Ions

4 TonB-Dependent Transport of Ni2+ and Co2+ Ions Across the Outer Membrane of Gram-Negative Bacteria

5 Transporters Involved in Ni2+ and Co2+ Resistance

6 Acknowledgments

7 Abbreviations and Acronyms

8 References

Transport Mechanism and Cellular Functions of Bacterial Cu(I)-ATPases

1 Introduction

2 The Structure and Transport Mechanism of Cu(I)-ATPases

3 Novel Functions for Cu(I)-ATPases

4 Remaining Questions and Future Directions

5 Acknowledgments

6 End Notes

7 Related Articles

8 Abbreviations and Acronyms

9 References

Copper Transport in Fungi

1 Introduction

2 Saccharomyces cerevisiae

3 Schizosaccharomyces pombe

4 Perspective

5 Acknowledgments

6 Related Articles

7 Abbreviations and Acronyms

8 References

Structural Biology of Copper Transport

1 Introduction

2 Copper Transporters

3 Abbreviations and Acronyms

4 References

Zinc Transporters and Trafficking in Yeast

1 Introduction

2 Zinc Homeostasis in Yeast

3 Acknowledgments

4 Abbreviations and Acronyms

5 References

Cadmium Transport in Eukaryotes

1 Introduction—History and Significance of Cadmium

2 Modes of Action and Molecular Targets of Cadmium

3 Transporters Involved in Cadmium Uptake

4 Chelation and Trafficking of Cadmium in the Cells

5 Subcellular Compartmentalization of Cadmium

6 Cadmium Efflux Transporters

7 Cadmium Stress Response

8 Summary and Perspective

9 Acknowledgments

10 Related Articles

11 Abbreviations and Acronyms

12 References

Part 4: Metals in Regulation

Metal Specificity of Metallosensors

1 Overview

2 Metal Selectivity in Prokaryotic Metallosensor Proteins

3 Different Protein Scaffolds are used to Sense the Same Metal Ion(s)

4 Concluding Remarks

5 Related Articles

6 Abbreviations and Acronyms

7 References

Metal Homeostasis and Oxidative Stress in Bacillus subtilis

1 Introduction

2 Regulation of Metal Ion Stress Responses

3 Responses to Metal Ion Deficiency

4 An Intricate Network of Metal Ion Homeostasis

5 Acknowledgment

6 Related Articles

7 Abbreviations and Acronyms

8 References

Regulation of Manganese and Iron Homeostasis in the Rhizobia and Related α-Proteobacteria

1 General Introduction

2 Manganese Metabolism and Regulation of Homeostasis

3 Iron Metabolism and Regulation of Homeostasis

4 Coordination of Iron- and Manganese-Dependent Processes

5 Acknowledgments

6 Abbreviations and Acronyms

7 References

The Iron Starvation Response in Saccharomyces cerevisiae

1 Iron as an Essential Nutrient

2 Transcriptional Response to Iron Deficiency

3 The Aft1/2 Regulon

4 Loss of Iron Cofactors in Iron Deficiency

5 Metabolic Adaptations to Iron Deficiency

6 Unresolved Questions in Iron Deficiency

7 Acknowledgments

8 Abbreviations and Acronyms

9 References

Hepcidin Regulation of Iron Homeostasis

1 Introduction

2 Hepcidin: A New Protein in Iron Homeostasis

3 Regulation of Hepcidin and Regulation of Iron Homeostasis

4 Human Disorders of Hepcidin–Ferroportin Axis

5 Hepcidin as a Therapeutic Target

6 Conclusions

7 Related Articles

8 Abbreviations and Acronyms

9 References

NikR: Mechanism and Function in Nickel Homeostasis

1 Introduction

2 Overall Structure

3 Metal Binding Properties

4 In Vivo Context of NikR and its Relation to Nickel Usage

5 Conclusions and Future Work

6 Abbreviations and Acronyms

7 References

Regulation of Copper Homeostasis in Plants

1 Copper Utilization as a Micronutrient

2 Cu and Soil: Deficiency and Toxicity Symptoms

3 Plant Cuproproteins

4 Plastocyanin the Blue Cu Protein

5 Metallochaperones

6 Copper Transporters

7 Copper Homeostasis

8 Regulation of P1B-Type ATPases

9 Outlook

10 Related Articles

11 Abbreviations and Acronyms

12 References

Regulation of Zinc Transport

1 Introduction

2 Measurement and Detection of Zinc Transport by ZnT and ZIP

3 Structural and Biochemical Features of ZnT and ZIP

4 Zinc Transport by ZnT and ZIP

5 Control of Zinc Transport through Regulated Expressionof ZnT and ZIP

6 Conclusions

Related Articles

7 Abbreviations and Acronyms

9 References

Selenoproteins—Regulation

1 Introduction

2 Regulation by Intake: Dietary Selenium

3 Regulation of Selenocysteine Incorporation

4 Regulation of Selenoprotein Synthesis

5 Concluding Remarks

6 Related Articles

7 Abbreviations and Acronyms

8 References

Part 5: Metals in Cellular Damage and Disease

Metals in Bacterial Pathogenicity and Immunity

1 Introduction

2 Salmonella Disease Progression

3 Iron in Host–Pathogen Interactions

4 Zinc and Manganese in Host–Pathogen Interactions

5 Copper in Host–Pathogen Interactions

6 Cobalt and Nickel in Host–Pathogen Interactions

7 Conclusions

8 Related Articles

9 Abbreviations and Acronyms

10 References

Manganese in Neurodegeneration

1 Introduction

2 Manganese-Induced Neurodegeneration

3 Neurodegenerative Diseases Related to Mn Exposure

4 Perspectives

5 Acknowledgments

6 Related Articles

7 Abbreviations and Acronyms

8 References

Iron Sequestration in Immunity

1 Introduction

2 Iron Sequestration in Innate Immunity

3 Abbreviations and Acronyms

4 References

Molecular Basis of Hemochromatosis

1 Introduction

2 Genetic Causes of Hemochromatosis

3 Conclusions and Future Directions

4 Acknowledgment

5 Related Articles

6 Abbreviations and Acronyms

7 References

Copper in Brain and Neurodegeneration

1 Introduction

2 Overview of the Role of Copper in the Brain

3 Copper in Neurological Diseases

4 Chelation Therapy for the Treatment of Neurodegeneration

5 Metal Protein Attenuating Compounds

6 Therapeutic Possibilities of Copper Delivery

7 Related Articles

8 Abbreviations and Acronyms

9 References

Copper Transporting ATPases in Mammalian Cells

1 Introduction

2 Expression and Localization of Human Cu-ATPases

3 Transport Cycle

4 Molecular Architecture of Human Cu-ATPases

5 Binding of ATP

6 Copper Binding to the Transport Sites of Cu-ATPases

7 Conformational Transitions and Copper Release

8 Copper-Dependent Regulation of Catalysis and Transport

9 Copper Delivery by Atox1

10 Molecular Determinants of Cu-ATPase Localizationand Trafficking in Cells

11 Conclusion

12 Acknowledgments

13 Abbreviations and Acronyms

14 References

Copper in Immune Cells

1 Introduction

2 Copper, Innate Immune Function, and Infection

3 Copper Tolerance in Bacterial Pathogens

4 The Effects of Loss of Copper Tolerance on Bacterial Survival in the Host

5 Copper and Macrophage Function

6 Copper Toxicity in Bacterial Systems

7 How does Copper Exert its Bactericidal Effect In Vivo?

8 Future Directions

9 Related Articles

10 Abbreviations and Acronyms

11 References

Selenoenzymes and Selenium Trafficking: An Emerging Target for Therapeutics

1 Introduction

2 Selenoprotein Synthesis

3 The Function of Selenoproteins in Prokaryotic Pathogens

4 Eukaryotic Pathogens

5 Targeting Selenoproteins and Selenoprotein Synthesis

6 Acknowledgments

7 Abbreviations and Acronyms

8 References

Resistance Pathways for Metalloids and Toxic Metals

1 Introduction

2 Arsenic in the Environment

3 Arsenic Transport

4 Arsenic Biotransformations

5 Zinc and Cadmium Resistance and Homeostasis

6 Acknowledgments

7 Abbreviations and Acronyms

8 References

Part 6: Cofactor Assembly

Fe–S Cluster Biogenesis in Archaea and Bacteria

1 Introduction: Fe–S Cluster Biogenesis and the Evolution of Metabolism

2 Sulfur Mobilization

3 Iron Donation

4 Scaffolds for Nascent Fe–S Cluster Assembly

5 Fe–S Cluster Trafficking from Scaffolds to Target Proteins

6 Redox Processes in Fe–S Cluster Biogenesis

7 Fe–S Cluster Disruption and Repair In Vivo

8 Regulation of Fe–S Cluster Biogenesis

9 Small Molecule Effectors of Fe–S Cluster Metabolism

10 Conclusion

11 Abbreviations and Acronyms

12 References

Mitochondrial Iron Metabolism and the Synthesis of Iron–Sulfur Clusters

1 Introduction

2 Iron Uptake into the Cell and Trafficking to Mitochondria

3 Iron, Iron–Sulfur Clusters, and the Mitochondrial Intermembrane Space

4 Iron Transport Across the Mitochondrial Inner Membrane

5 Mitochondrial Iron Pool for Fe–S Cluster Assembly

6 Iron Accumulation in Mitochondria

7 Conclusions

8 Acknowledgments

9 Abbreviations and Acronyms

10 References

[FeFe]-Hydrogenase Cofactor Assembly

1 Introduction

2 The Nature of HydA Before Maturation

3 HydF as a Scaffold/Carrier

4 Radical SAM Chemistry in H-Cluster Biosynthesis

5 Summary of Current Understanding

6 Evolutionary Implications

7 Abbreviations and Acronyms

8 References

[NiFe]-Hydrogenase Cofactor Assembly

1 Introduction

2 The core Hyp Maturases

3 Nickel Insertion into the Precursor of the Large Subunit

4 Endoproteolytic Cleavage and Active Site Closure

5 Bioinorganic Considerations—are Hydrogenases Relics of Archaic Metabolism?

6 Acknowledgements

7 Related Articles

8 Abbreviations and Acronyms

9 References

Copper in Mitochondria

1 Introduction

2 Copper in the Inner Membrane (IM)

3 Copper in the Intermembrane Space (IMS)

4 Copper in the Matrix

5 Conclusion and Future Considerations

6 Abbreviations and Acronyms

7 References

Mo Cofactor Biosynthesis and Crosstalk with FeS

1 Introduction

2 The Molybdenum Cofactor

3 Molybdenum Enzymes

4 Molybdenum Cofactor Biosynthesis

5 Acknowledgments

6 Related Articles

7 Abbreviations and Acronyms

8 References

Nitrogenase Cofactor Assembly

1 Introduction

2 Assembly of the M-cluster

3 Ackowledgments

4 Abbreviations and Acronyms

5 References

Index

Contributors

Maud E.S. Achard

University of Queensland, St. Lucia, QLD, Australia

Copper in Immune Cells

José M. Argüello

Worcester Polytechnic Institute, Worcester, MA, USA

Transport Mechanism and Cellular Functions of Bacterial Cu(I)-ATPases

Michael Aschner

The Kennedy Center for Research on Human Development and the Molecular Toxicology Center, Nashville, TN, USA

Manganese in Neurodegeneration

Daiana Silva Avila

Universidade Federal do Pampa, Uruguaiana, RS, Brazil

Manganese in Neurodegeneration

Pritha Bagchi

Georgia Institute of Technology, Atlanta, GA, USA

Fluorescent Probes for Monovalent Copper

Jude Beaudoin

Université de Sherbrooke, Sherbrooke, QC, Canada

Copper Transport in Fungi

Marla J. Berry

University of Hawaii at Manoa, Honolulu, HI, USA

Selenoproteins—Regulation

Florian Bittner

Braunschweig University of Technology, Braunschweig, Germany

Mo Cofactor Biosynthesis and Crosstalk with FeS

Crysten E. Blaby-Haas

University of California, Los Angeles, CA, USA

Sparing and Salvaging Metals in Chloroplasts

Eric S. Boyd

Montana State University, Bozeman, MT, USA

[FeFe]-Hydrogenase Cofactor Assembly

Jeff M. Boyd

Rutgers University, New Brunswick, NJ, USA

Fe–S Cluster Biogenesis in Archaea and Bacteria

Joan B. Broderick

Montana State University, Bozeman, MT, USA

[FeFe]-Hydrogenase Cofactor Assembly

Ashley I. Bush

University of Melbourne, Parkville, VIC, Australia

Copper in Brain and Neurodegeneration

Amanda S. Byer

Montana State University, Bozeman, MT, USA

[FeFe]-Hydrogenase Cofactor Assembly

Clara Camaschella

Vita-Salute University and San Raffaele Scientific Institute, Milano, Italy

Hepcidin Regulation of Iron Homeostasis

Kyle P. Carter

University of Colorado, Boulder, CO, USA

Fluorescent Zinc Sensors

Jennifer S. Cavet

University of Manchester, Manchester, UK

Metals in Bacterial Pathogenicity and Immunity

Harsimranjit K. Chahal

Rutgers University, New Brunswick, NJ, USA

Fe–S Cluster Biogenesis in Archaea and Bacteria

Paul A. Cobine

Auburn University, Auburn, AL, USA

Copper in Mitochondria

Jessica M. Collins

Worcester Polytechnic Institute, Worcester, MA, USA

Transport Mechanism and Cellular Functions of Bacterial Cu(I)-ATPases

Colin Correnti

Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Iron Sequestration in Immunity

Joao Batista Teixeira da Rocha

Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

Manganese in Neurodegeneration

Andrew Dancis

University of Pennsylvania, Philadelphia, PA, USA

Mitochondrial Iron Metabolism and the Synthesis of Iron–Sulfur Clusters

Karrera Y. Djoko

University of Queensland, St. Lucia, QLD, Australia

Copper in Immune Cells

David J. Eide

University of Wisconsin-Madison, Madison, WI, USA

Zinc Transporters and Trafficking in Yeast

Thomas Eitinger

Humboldt-Universität zu Berlin, Berlin, Germany

Transport of Nickel and Cobalt in Prokaryotes

Christoph J. Fahrni

Georgia Institute of Technology, Atlanta, GA, USA

Fluorescent Probes for Monovalent Copper

Adrian G. Flores

Northwestern University, Evanston, IL, USA

Structural Biology of Copper Transport

Andrew W. Foster

University of Durham, Durham, UK

Cyanobacterial Models that Address Cross-Talk in Metal Homeostasis

David P. Giedroc

Indiana University, Bloomington, IN, USA

Metal Specificity of Metallosensors

Benjamin A. Gilston

Northwestern University, Evanston, IL, USA

Mechanisms Controlling the Cellular Metal Economy

Vadim N. Gladyshev

Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

The Metallome

Mary Lou Guerinot

Dartmouth College, Hanover, NH, USA

Iron in Plants

John D. Helmann

Cornell University, Ithaca, NY, USA

Metal Homeostasis and Oxidative Stress in

Bacillus subtilis

Khadine A. Higgins

Indiana University, Bloomington, IN, USA

Metal Specificity of Metallosensors

Yilin Hu

University of California, Irvine, CA, USA

Nitrogenase Cofactor Assembly

Raphaël Ioannoni

Université de Sherbrooke, Sherbrooke, QC, Canada

Copper Transport in Fungi

Michael D. Jones

University of Toronto, Toronto, ON, Canada

NikR: Mechanism and Function in Nickel Homeostasis

Taiho Kambe

Kyoto University, Kyoto, Japan

Regulation of Zinc Transport

Simon Labbé

Université de Sherbrooke, Sherbrooke, QC, Canada

Copper Transport in Fungi

Chi Chung Lee

University of California, Irvine, CA, USA

Nitrogenase Cofactor Assembly

Jaekwon Lee

University of Nebraska-Lincoln, Lincoln, NE, USA

Cadmium Transport in Eukaryotes

Jeffrey R. Liddell

University of Melbourne, Parkville, VIC, Australia

Copper in Brain and Neurodegeneration

Paul A. Lindahl

Texas A&M University, College Station, TX, USA

Mitochondrial Iron Metabolism and the Synthesis of Iron–Sulfur Clusters

Zijuan Liu

Oakland University, Rochester, MI, USA

Resistance Pathways for Metalloids and Toxic Metals

Svetlana Lutsenko

Johns Hopkins University, Baltimore, MD, USA

Copper Transporting ATPases in Mammalian Cells

Zhen Ma

Cornell University, Ithaca, NY, USA

Metal Homeostasis and Oxidative Stress in

Bacillus subtilis

Alastair G. McEwan

University of Queensland, St. Lucia, QLD, Australia

Copper in Immune Cells

Ralf R. Mendel

Braunschweig University of Technology, Braunschweig, Germany

Mo Cofactor Biosynthesis and Crosstalk with FeS

Sabeeha S. Merchant

University of California, Los Angeles, CA, USA

Sparing and Salvaging Metals in Chloroplasts

Jose G. Miranda

University of Colorado, Boulder, CO, USA

Fluorescent Zinc Sensors

M. Thomas Morgan

Georgia Institute of Technology, Atlanta, GA, USA

Fluorescent Probes for Monovalent Copper

Mark R. O'Brian

State University of New York at Buffalo, Buffalo, NY, USA

Regulation of Manganese and Iron Homeostasis in the Rhizobia and Related -Proteobacteria

Thomas V. O'Halloran

Northwestern University, Evanston, IL, USA

Mechanisms Controlling the Cellular Metal Economy

F. Wayne Outten

University of South Carolina, Columbia, SC, USA

Fe–S Cluster Biogenesis in Archaea and Bacteria

Teresita Padilla-Benavides

Worcester Polytechnic Institute, Worcester, MA, USA

Transport Mechanism and Cellular Functions of Bacterial Cu(I)-ATPases

Amy E. Palmer

University of Colorado, Boulder, CO, USA

Fluorescent Zinc Sensors

Carl J. Patterson

University of Durham, Durham, UK

Cyanobacterial Models that Address Cross-Talk in Metal Homeostasis

Barry H. Paw

Brigham and Women's Hospital and Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Iron and Heme Transport and Trafficking

James E. Penner-Hahn

University of Michigan, Ann Arbor, MI, USA

X-Ray Fluorescence Microscopy

Rafael Pernil

University of Durham, Durham, UK

Cyanobacterial Models that Address Cross-Talk in Metal Homeostasis

John W. Peters

Montana State University, Bozeman, MT, USA

[FeFe]-Hydrogenase Cofactor Assembly

Caroline C. Philpott

National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA

The Iron Starvation Response in

Saccharomyces cerevisiae

Marinus Pilon

Colorado State University, Fort Collins, CO, USA

Regulation of Copper Homeostasis in Plants

Christopher R. Pope

Northwestern University, Evanston, IL, USA

Structural Biology of Copper Transport

Robson Luiz Puntel

Universidade Federal do Pampa, Uruguaiana, RS, Brazil

Manganese in Neurodegeneration

Christopher Rensing

University of Copenhagen, Frederiksberg, Denmark

Resistance Pathways for Metalloids and Toxic Metals

Markus W. Ribbe

University of California, Irvine, CA, USA

Nitrogenase Cofactor Assembly

Nigel J. Robinson

University of Durham, Durham, UK

Cyanobacterial Models that Address Cross-Talk in Metal Homeostasis

Sarah Rosario

University of Central Florida, Orlando, FL, USA

Selenoenzymes and Selenium Trafficking: An Emerging Target for Therapeutics

Barry P. Rosen

Florida International University, Miami, FL, USA

Resistance Pathways for Metalloids and Toxic Metals

R. Gary Sawers

Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany

[NiFe]-Hydrogenase Cofactor Assembly

Paul J. Schmidt

Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

Molecular Basis of Hemochromatosis

Lucia A. Seale

University of Hawaii at Manoa, Honolulu, HI, USA

Selenoproteins—Regulation

William Self

University of Central Florida, Orlando, FL, USA

Selenoenzymes and Selenium Trafficking: An Emerging Target for Therapeutics

Eric M. Shepard

Montana State University, Bozeman, MT, USA

[FeFe]-Hydrogenase Cofactor Assembly

Laura Silvestri

Vita-Salute University and San Raffaele Scientific Institute, Milano, Italy

Hepcidin Regulation of Iron Homeostasis

Nathan Smith

University of Nebraska-Lincoln, Lincoln, NE, USA

Cadmium Transport in Eukaryotes

Pamela M. Smith

National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA

The Iron Starvation Response in

Saccharomyces cerevisiae

Felix Antunes Soares

Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

Manganese in Neurodegeneration

Basem Soboh

Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany

[NiFe]-Hydrogenase Cofactor Assembly

Roland K. Strong

Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Iron Sequestration in Immunity

Kevin D. Swanson

Montana State University, Bozeman, MT, USA

[FeFe]-Hydrogenase Cofactor Assembly

Andrew M. Sydor

University of Toronto, Toronto, ON, Canada

NikR: Mechanism and Function in Nickel Homeostasis

Wiebke Tapken

Colorado State University, Fort Collins, CO, USA

Regulation of Copper Homeostasis in Plants

Vinzenz M. Unger

Northwestern University, Evanston, IL, USA

Structural Biology of Copper Transport

Katherine E. Vest

Auburn University, Auburn, AL, USA

Copper in Mitochondria

Wenzhong Wei

University of Nebraska-Lincoln, Lincoln, NE, USA

Cadmium Transport in Eukaryotes

Jessica B. Weng

Dartmouth College, Hanover, NH, USA

Iron in Plants

Anthony R. White

University of Melbourne, Parkville, VIC, Australia

Copper in Brain and Neurodegeneration

Jared A. Wiig

University of California, Irvine, CA, USA

Nitrogenase Cofactor Assembly

Yi-Hsuan Wu

University of Wisconsin-Madison, Madison, WI, USA

Zinc Transporters and Trafficking in Yeast

Nan Yang

Johns Hopkins University, Baltimore, MD, USA

Copper Transporting ATPases in Mammalian Cells

Yvette Y. Yien

Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

Iron and Heme Transport and Trafficking

Deborah B. Zamble

University of Toronto, Toronto, ON, Canada

NikR: Mechanism and Function in Nickel Homeostasis

Yan Zhang

Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

The Metallome

Series Preface

The success of the Encyclopedia of Inorganic Chemistry (EIC), pioneered by Bruce King, the founding editor-in-chief, led to the 2012 integration of articles from the Handbook of Metalloproteins to create the newly launched Encyclopedia of Inorganic and Bioinorganic Chemistry (EIBC). This has been accompanied by a significant expansion of our Editorial Advisory Board with international representation in all areas of inorganic chemistry. It was under Bruce's successor, Bob Crabtree, that it was recognized that not everyone would necessarily need access to the full extent of EIBC. All EIBC articles are online and are searchable, but we still recognized value in more concise thematic volumes targeted to a specific area of interest. This idea encouraged us to produce a series of EIC (now EIBC) books, focusing on topics of current interest. These will continue to appear on an approximately annual basis and will feature the leading scholars in their fields, often being guest coedited by one of these leaders. Like the Encyclopedia, we hope that EIBC books continue to provide both the starting research student and the confirmed research worker a critical distillation of the leading concepts and provide a structured entry into the fields covered.

The EIBC books are referred to as “spin-on” books, recognizing that all the articles in these thematic volumes are destined to become part of the online content of EIBC, usually forming a new category of articles in the EIBC topical structure. We find that this provides multiple routes to find the latest summaries of current research.

I fully recognize that this latest transformation of EIBC is built upon the efforts of my predecessors, Bruce King and Bob Crabtree, my fellow editors, as well as the Wiley personnel, and, most particularly, the numerous authors of EIBC articles. It is the dedication and commitment of all these people that is responsible for the creation and production of this series and the “parent” EIBC.

Robert A. Scott

University of Georgia

September 2013

Volume Preface

Our understanding of metals and other trace elements in cells has witnessed an explosion over recent years. This has been prompted by a combination of new methods to probe intracellular metal locations and the dynamics of metal movement in cells, high-resolution detection of metal–biomolecule interactions, and the revolution of genomic, proteomic, metabolic, and even “metallomic” approaches to the study of inorganic physiology. Environmental metals and metalloids, including iron, copper, zinc, cobalt, molybdenum, selenium, and manganese, are all accumulated by cells and organisms in the micro- to millimolar range. Yet despite this abundant sea of diverse metals, only the correct metal cofactor is matched with a partner metalloprotein—mistakes in metal ion biology rarely occur. At the same time, free metal ions can be detrimental to cellular components and processes, so systems have evolved to control carefully the trace element concentrations and locations (homeostasis). The mechanisms underlying this “perfect” handling of metals are the goal of studies of the cell biology of metals.

Metals in Cells covers topics describing recent advances made by top researchers in the field including: regulated metal ion uptake and trafficking, sensing of metals within cells and across tissues, and identification of the vast array of cellular factors designed to orchestrate assembly of metal cofactor sites while minimizing toxic side reactions of metals. In addition, it features the aspects of metals in disease, including the role of metals in neurodegeneration, liver disease, and inflammation, as a way to highlight the detrimental effects of mishandling of metal trafficking and response to “foreign” metals.

While it is not possible to provide a comprehensive treatment of transport, homeostasis, sensing, and regulation of the entire “biological periodic table,” what Metals in Cells does, is give a broad sampling of the current knowledge and research frontiers in these areas. The reader will get a sense of some of the general principles of biological response to trace elements, but will also marvel at the disparate evolutionary responses of different organisms to a variable and changing inorganic environment. One of the ultimate goals in this area is to find the principles of inorganic chemistry in the biological responses.

Metals in Cells also gives an up-to-date description of many of the current tools being used to study inorganic cell biology. Genetics and biochemistry are combining with more recent genomic, proteomic, and metallomic approaches. Increasingly sophisticated microscopy and imaging technologies provide information about dynamic distribution of inorganic elements in cells and subcellular compartments. There is yet more room for improvement by collaborative approaches among physicists, chemists, and biologists.

With the breadth of our recently acquired understanding of inorganic cell biology, we believe that Metals in Cells, featuring key aspects of cellular handling of inorganic elements, is both timely and important. At this point in our progress, it is worthwhile to step back and take an expansive view of how far our understanding has come, while also highlighting how much we still do not know.

Valeria Culotta

Robert A. Scott

Johns Hopkins University

University of Georgia

Baltimore, MD, USA

Athens, GA, USA

September 2013

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!