160,99 €
This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 311
Veröffentlichungsjahr: 2013
Table of Contents
Introduction
PART 1: 3D Models
Chapter 1: Non-Linear Waves With REFLUX 3D
1.1. Context
1.2. Data required for implementation
1.3. Specific numerical methods
1.4. Modeling options
1.5. Results output by the code, and operation
1.6. Examples of models
1.7. Bibliography
Chapter 2: Current Modeling with TELEMAC3D
2.1. TELEMAC3D: 3D hydrodynamics at a free surface
2.2. Equations used in TELEMAC3D
2.3. Choices of 3D mesh
2.4. Specific features
2.5. Simple transition from TELEMAC2D to TELEMAC3D
2.6. Application example
2.7. Bibliography
Chapter 3: Atmospheric Modeling
3.1. The rise of modeling as a tool in meteorology
3.2. Operational weather forecasting models
3.3. Towards kilometer-scale numerical forecasting — the AROME model
3.4. Bibliography
Chapter 4: Groundwater Flow Modeling in Porous Media Using MARTHE
4.1. Application area
4.2. References
4.3. Technical features
4.4. Structure of the code
4.5. WinMarthe preprocessor
4.6. Simulation of the migration of a pollution plume
4.7. Complex hydrogeological configurations
4.8. Biphasic simulation of saline intrusion
4.9. Infiltration of imiscible TCE (tetracholoethylene) into heterogenous sand initially saturated with water
4.10. Biphasic simulation of water injected at four points into an aquifier initially saturated with oil
4.11. Biphasic simulation of methane storage in an aquifer
PART 2: 2D Models
Chapter 5: Meteorology and Hydrology
5.1. Bibliography
Chapter 6: Hydrological Modeling with MARINE
6.1. General description of MARINE
6.2. Description of pre-processing
6.3. Description of the hydrological module
6.4. Description of river transport
6.5. Application examples
6.6. Bibliography
Chapter 7: Distributed Hydrological Modeling — the ATHYS Platform
7.1. General description of ATHYS
7.2. Pre-processing phase
7.3. Description hydrological models
7.4. Description of post-processing
7.5. Applications
7.6. Conclusions and future directions
7.7. Bibliography
Chapter 8: Operational Applications of the LARSIM Model for Flood Forecasting
8.1. The problem
8.2. Structure of the LARSIM model
8.3. Operational mode — summary
8.4. Quality control and validation of input data
8.5. Spatial interpolation of rainfall data
8.6. Launching a forecasting simulation
8.7. Analysis of results, and experiments performed by the flood prediction services
8.8. Bibliography
Chapter 9: Real-Time Runoff — Infiltration Models: TOPMODEL
9.1. Introduction
9.2. TOPMODEL philosophy
9.3. Advantages of TOPMODEL
9.4. Forcing and predicted variables in TOPMODEL
9.5. Analytical basis
9.6. Bibliography
Chapter 10: Currents with TELEMAC2D
10.1. TELEMAC2D: hydrodynamics and the environment
10.2. The TELEMAC system
10.3. Original features and customizable code
10.4. TELEMAC as a training tool for hydraulic engineers
10.5. Bibliography
Chapter 11: 2D Model of Sediment Transport with RUBAR 20TS
11.1. Description of the 2D RUBAR 20TS model
11.2. Bibliography
Chapter 12: NAVMER: Ship Trajectory Simulator
12.1. The simulator
12.2. Simulations of a passenger vessel on the Seine
12.3. Sixth crossing on the Seine
12.4. Le Havre Port 2000: navigability of outer reaches
12.5. Port of Nice
12.6. Outlook
PART 3: 1D Models
Chapter 13: Waves Using VAG
13.1. Context
13.2. Results from the operational code
13.3. Examples of models
13.4. Bibliography
Chapter 14: Real Time Discharge-Discharge Models with SOPHIE
14.1. Discharge-discharge relationships
14.2. Rainfall-runoff models
14.3. Other models
14.4. Which model to use?
Chapter 15: 1D Flow Models: Comparing MASCARET and RUBAR 3
15.1. Analysis of Saint-Venant equations for transcritical flows
15.2. Numerical solution of sub-critical and super-critical regimesfor the 1D Saint-Venant equations: examples of the RUBAR 3 and MASCARET computer codes
15.3. Example calculation: propagation of the dam-break wave for the Malpasset barrage
15.4. Bibliography
Chapter 16: 1D Compartment Flow Models
16.1. Context
16.2. Modeling options
16.3. Data required for implementation
16.4. Specific numerical methods
16.5. Code output and analysis
16.6. Examples of models
Chapter 17: CANOE: An Urban Hydrology Software Package
17.1. Origin
17.2. General description
17.3. Structural data management (project)
17.4. Management of structure catalog (transport)
17.5. Management of hydrometric data (rainfall)
17.6. Hydrological and hydraulic simulation
17.7. Water quality simulation
17.8. Project assistant
17.9. CANOE-GIS
17.10. Examples of pre-and post-processing workflows
Chapter 18: Water Quality with ProSe
18.1. Hydrodynamic model
18.2. Transport model
18.3. Sediment exchange
18.4. Biochemical model
18.5. Bibliography
Chapter 19: Substance Transport
19.1. Context
19.2. Modeling options
19.3. Data required for implementation
19.4. Specific numerical methods
19.5. Results from the code, and analysis of results
19.6. Bibliography
Chapter 20: 1D Sediment Transport with RUBARBE and TSAR
20.1. RUBARBE code
20.2. Sediment description for the river bed
20.3. Method of solution
20.4. Sedimentary balance within a mesh cell
20.5. Shear stress calculation
20.6. The TSAR code
20.7. Bibliography
Chapter 21: An Integrated Simulation Platform — PamHyr
21.1. Overview
21.2. Key features of a hydraulic modeling environment (HME)
21.3. PamHyr: an example HME
21.4. Bibliography
List of Authors
Index
General Index of Authors
Summary of Volume 1: Physical Processes and Measurement Devices
Summary of Volume 2: Mathematical Models
Summary of Volume 3: Numerical Methods
Summary of Volume 4: Practical Applications in Engineering
First published 2010 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Adapted and updated from Traité d’hydraulique environnementale 9 published 2010 in France by Hermes Science/Lavoisier © LAVOISIER 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE LtdJohn Wiley & Sons, Inc.27-37 St George’s Road111 River StreetLondon SW19 4EUHoboken, NJ 07030UKUSAwww.iste.co.ukwww.wiley.com© ISTE Ltd 2010
The rights of Jean-Michel Tanguy to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Cataloging-in-Publication Data
Traité d’hydraulique environnementale. English.
Environmental hydraulics / edited by Jean-Michel Tanguy.
v. cm.
Includes index.
Contents: v. 1. Physical processes and measurement devices -- v. 2. Mathematical models -- v. 3. Numerical methods -- v. 4. Practical applications in engineering -- v. 5. Modeling software. ISBN 978-1-84821-152-0 (set) -- ISBN 978-1-84821-153-7 (v. 1) -- ISBN 978-1-84821-154-4 (v. 2) -- ISBN 978-1-84821-155-1 (v. 3) -- ISBN 978-1-84821-156-8 (v. 4) -- ISBN 978-1-84821-157-5 (v. 5) 1. Environmental hydraulics. I. Tanguy, Jean-Michel, 1951- II. Title.
TC163.5.T6913 2010
627--dc22
2010019879
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-152-0 (Set of 5 volumes)
ISBN 978-1-84821-157-5 (Volume 5)
Introduction1
This fifth volume of the environmental hydraulics series completes the series. Volume 1 described hydrological and fluvial processes; while Volume 2 covered estuarine and littoral processes. Volume 2 also described the mathematical modeling of these processes, emphasizing the consistency between models. Volume 3 lists and describes the numerical methods used to solve systems of partial differential equations in hydrological contexts. Following these physical and theoretical considerations, Volume 4 describes a wide range of real-world studies carried out using commercial computer models.
This final volume thus develops the theme of the earlier installments, discussing a range of commercial modeling tools that can be used to treat examples such as those described earlier in the series.
In order to remain faithful to the theme of the series we will start with hydrological modeling tools and go on to discuss tools treating maritime morphodynamics.
This volume is divided into three main sections: 3D models, which represent the most recent advances in numerical modeling, and which are currently beginning to emerge onto the commercial stage, 2D models which are seeing more and more widespread use in engineering applications, and 1D models which remain the most widely used tools for engineers.
It is worth recalling a brief history of the evolution of spatial discretization within modeling tools, as shown in Figure i.1.
The first models appeared in the 1960s in the field of meteorology, a field with strong scientific and strategic interest. Over the next decade the first computer models emerged to replace manual calculations. These were largely developed by consultant engineers. These models mostly consisted of Fortran calculation loops solving the 1D Saint-Venant model, based on extremely simplified geometries such as trapezoidally structured river models.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
