113,99 €
Presents opportunities for making significant improvements in preventing harmful effects that can be caused by corrosion * Describes concepts of molecular modeling in the context of materials corrosion * Includes recent examples of applications of molecular modeling to corrosion phenomena throughout the text * Details how molecular modeling can give insights into the multitude of interconnected and complex processes that comprise the corrosion of metals * Covered applications include diffusion and electron transfer at metal/electrolyte interfaces, Monte Carlo simulations of corrosion, corrosion inhibition, interrogating surface chemistry, and properties of passive films * Presents current challenges and likely developments in this field for the future
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 590
Veröffentlichungsjahr: 2015
COVER
TITLE PAGE
LIST OF CONTRIBUTORS
FOREWORD
PREFACE
1 AN INTRODUCTION TO CORROSION MECHANISMS AND MODELS
1.1 INTRODUCTION
1.2 MECHANISMS IN CORROSION SCIENCE
1.3 MOLECULAR MODELING
1.4 BRIDGING THE REALITY GAP
1.5 MOLECULAR MODELING AND CORROSION
REFERENCES
2 MOLECULAR MODELING OF STRUCTURE AND REACTIVITY AT THE METAL/ENVIRONMENT INTERFACE
2.1 INTRODUCTION
2.2 STRUCTURE AND REACTIVITY OF WATER OVER METAL SURFACES
2.3 MOLECULAR MODELING OF CHEMISORBED PHASES UNDER COMPETING ADSORPTION CONDITIONS
2.4 COADSORPTION OF IONS AT THE INTERFACE AND PROMOTION OF HYDROGEN UPTAKE
2.5 DISSOLUTION OF METAL ATOMS
2.6 SUMMARY AND PERSPECTIVES
REFERENCES
3 PROCESSES AT METAL–SOLUTION INTERFACES: MODELING AND SIMULATION
3.1 INTRODUCTION
3.2 SURFACE MOBILITY
3.3 KMC: DETAILS IN THE MODEL AND SIMULATION TECHNIQUE
3.4 ISLAND DYNAMICS ON CHARGED SILVER ELECTRODES
3.5 OSTWALD RIPENING
3.6 THE EFFECT OF ADSORBED Cl ATOMS ON THE MOBILITY OF ADATOMS ON AU(100)
3.7 SOME CONCLUSIONS ON SURFACE MOBILITY
3.8 THEORY OF ELECTROCHEMICAL CHARGE TRANSFER REACTION
3.9 CONCLUSIONS AND OUTLOOK
ACKNOWLEDGMENTS
REFERENCES
4 ATOMISTIC MONTE-CARLO SIMULATIONS OF DISSOLUTION
4.1 INTRODUCTION
4.2 METROPOLIS MONTE CARLO AND KINETIC MONTE CARLO SIMULATIONS
4.3 DISCUSSION
4.4 SUMMARY
ACKNOWLEDGMENTS
REFERENCES
5 ADSORPTION OF ORGANIC INHIBITOR MOLECULES ON METAL AND OXIDIZED SURFACES STUDIED BY ATOMISTIC THEORETICAL METHODS
5.1 INTRODUCTION
5.2 STATE OF THE ART IN MODELING INHIBITION PROPERTIES THROUGH ATOMISTIC METHODS
5.3 CONCLUSIONS AND FUTURE DIRECTIONS
REFERENCES
6 THERMODYNAMICS OF PASSIVE FILM FORMATION FROM FIRST PRINCIPLES
6.1 INTRODUCTION
6.2 BACKGROUND ON OXIDE FORMATION
6.3 COMPARISON WITH EXPERIMENT
6.4 METHODOLOGY FOR STUDYING OXIDE FILM FORMATION FROM FIRST PRINCIPLES
6.5 CASE STUDIES
6.6 THE FUTURE
REFERENCES
7 PASSIVE FILM FORMATION AND LOCALIZED CORROSION
7.1 INTRODUCTION
7.2 DFT: A SHORT INTRODUCTION
7.3 MODELING OF OXIDE SURFACES
7.4 INTERACTION WITH WATER AND SURFACE HYDROXYLATION
7.5 INTERACTION WITH AGGRESSIVE SPECIES AND IMPLICATIONS FOR PASSIVE FILM BREAKDOWN
7.6 CONCLUSION
REFERENCES
8 MULTISCALE MODELING OF HYDROGEN EMBRITTLEMENT
8.1 INTRODUCTION
8.2 MULTISCALE MODELING APPROACHES
8.3 MULTISCALE MODELING OF HYDROGEN EMBRITTLEMENT
8.4 SUMMARY AND OUTLOOK
ACKNOWLEDGMENT
REFERENCES
INDEX
THE ELECTROCHEMICAL SOCIETY SERIES
END USER LICENSE AGREEMENT
Chapter 02
TABLE 2.1 First-principles adsorption energies for H, NH
x
, OH
x
, and Cl species on Fe(110) prior to zero-point energy correction, given in eV
TABLE 2.2 Binding energies, ΔE, with reference to H
2
(g) and interatomic distances (d(Ni–H), d(Ni–S), and d(S–H)) for adsorption states of hydrogen and sulfur, embedded sulfur, and coadsorption states of hydrogen, hydrogen–sulfur, and hydrogen-embedded sulfur on Ni(111), respectively
Chapter 03
TABLE 3.1 Dipole moment differences
Δμ
(in
E
0
Å) between transition and initial states for the considered diffusion pathways
TABLE 3.2 Stiffness coefficients in eVÅ
–1
as a function of temperature
T
(K) at different electric fields
E
z
(Vm
–1
) for Ag(100)
TABLE 3.3 Kink energies
ε
k
in eV as a function of the electric field
E
z
(Vm
–1
) for Ag(100)
TABLE 3.4 Line tension
γ
in eVÅ
–1
as a function of temperature
T
(K) at different electric fields
E
z
(Vm
–1
) for Ag(100)
TABLE 3.5 Lifetime
t
f
(s) of the Ag(100) inner island at different temperatures
T
and different electric fields
E
TABLE 3.6 Step line tensions
γ
× 10
2
(eVÅ
–1
) obtained by fitting island decay curves at various temperatures
T
and electric fields
E
TABLE 3.7 Comparison of the activation energy of the most important process in Ostwald ripening obtained in the presence and absence of adsorbed Cl
TABLE 3.8 Calculated energies of activation for hydrogen adsorption (Volmer step) on various metals at SHE
Chapter 04
TABLE 4.1 Example table of rates and probabilities for three transitions in a KMC model of selective dissolution
TABLE 4.2 Excerpted listing of standard electromotive force potentials
TABLE 4.3 Binding energies for atoms in the simulation alloys
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
