Multi-objective Design Optimization of Switched Reluctance Motor Drive Systems - Xiaodong Sun - E-Book

Multi-objective Design Optimization of Switched Reluctance Motor Drive Systems E-Book

Xiaodong Sun

0,0
149,79 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This book presents the design optimization method for switched reluctance motors (SRMs) and drive systems. It covers an in-depth literature review on the status and potential trend of design optimization techniques for SRMs, including design theory, modeling methods, topologies, control methods, and techniques for optimization efficiency and effects. Readers will discover new design methods based on the specific nonlinear characteristics of SRMs, and multi-objective optimization methods for the design of high-quality switched reluctance drive systems without or with the consideration of uncertainties, i.e., the deterministic and robust approaches. Multi-mode design optimization method regarding SRMs is investigated and some examples are presented. In addition, some essential trends in design optimization development are presented and highlighted as future perspectives. This book benefits students, researchers, engineers, and companies in the field of electrical drive design and manufacturing.

 

The focuses of this book are different from those of the published books. The advanced optimization methods including deterministic optimization, robust optimization, and system-level optimization are not discussed in these books. Besides, new design method based on the nonlinear characteristic and multi-mode optimization combined with specific application will be introduced to the design of high-performance of switched reluctance machines.

Das E-Book können Sie in einer beliebigen App lesen, die das folgende Format unterstützt:

PDF

Veröffentlichungsjahr: 2024

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.