Numerische Lösung von Anfangswertproblemen. Anwendung des Runge-Kutta-Verfahrens - Martin Büttner - E-Book

Numerische Lösung von Anfangswertproblemen. Anwendung des Runge-Kutta-Verfahrens E-Book

Martin Büttner

0,0
12,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Projektarbeit aus dem Jahr 2007 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1,3, Humboldt-Universität zu Berlin, Veranstaltung: Numerische Mathematik, Sprache: Deutsch, Abstract: In der vorliegenden Arbeit setzen wir uns mit numerischen und damit approximativ bestimmten Lösungen eines AWP auseinander. Bei Verfahren zur Bestimmung dieser Näherungen unterscheidet man zwischen Ein- und Mehrschrittverfahren. Wir wollen uns nun auf eine spezielle Klasse von Einschrittverfahren, auf die sogenannten Runge-Kutta-Verfahren beschränken. Um das approximative Verhalten einer numerischen Lösung gegenüber einer genauen Lösung des AWP zu untersuchen, sind die Konsistenzordnung, die Konvergenzordnung, sowie die Stabilität von einschneidender Bedeutung. Weiterhin werden Stabilität, Steifheit, stationäre Punkte und Langzeitverhalten für unsere Modellgleichung untersucht.

Das E-Book können Sie in einer beliebigen App lesen, die das folgende Format unterstützt:

PDF

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.