142,99 €
Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials.
In this completely revised and expanded third edition the authors also cover graphene as one of the most important research topics in the field of low dimensional materials for electronic applications. In addition, the topics of nanotubes and nanoribbons are widely enlarged to reflect the research advances of the last years.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 622
Veröffentlichungsjahr: 2015
Cover
Related Titles
Title Page
Copyright
About the Authors
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Chapter 1: Introduction
1.1 Dimensionality
1.2 Approaching One-Dimensionality from Outside and from Inside
1.3 Dimensionality of Carbon Solids
1.4 Peculiarities of One-Dimensional Systems
References
Chapter 2: One-Dimensional Substances
2.1 A15 Compounds
2.2 Krogmann Salts
2.3 Alchemists' Gold
2.4 Bechgaard Salts and Other Charge Transfer Compounds
2.5 Polysulfurnitride
2.6 Phthalocyanines and Other Macrocycles
2.7 Transition Metal Chalcogenides and Halides
2.8 Conducting Polymers
2.9 Halogen-Bridged Mixed-Valence Transition Metal Complexes
2.10 Miscellaneous
2.11 Isolated Nanowires
2.12 Summary
References
Chapter 3: One-Dimensional Solid-State Physics
3.1 Crystal Lattice and Translation Symmetry
3.2 Reciprocal Lattice, Reciprocal Space
3.3 The Dynamic Crystal and Dispersion Relations
3.4 Phonons and Electrons Are Different
3.5 Summary
References
Chapter 4: Electron–Phonon Coupling and the Peierls Transition
4.1 The Peierls Distortion
4.2 Phonon Softening and the Kohn Anomaly
4.3 Fermi Surface Warping
4.4 Beyond Electron–Phonon Coupling
References
Chapter 5: Conducting Polymers: Solitons and Polarons
5.1 General Remarks
5.2 Conjugated Double Bonds
5.3 A Molecular Picture
5.4 Conjugational Defects
5.5 Solitons
5.6 Generation of Solitons
5.7 Nondegenerate Ground-State Polymers: Polarons
5.8 Fractional Charges
5.9 Soliton Lifetime
References
Chapter 6: Conducting Polymers: Conductivity
6.1 General Remarks on Conductivity
6.2 Measuring Conductivities
6.3 Conductivity in One Dimension: Localization
6.4 Conductivity and Solitons
6.5 Experimental Data
6.6 Hopping Conductivity: Variable Range Hopping vs. Fluctuation-Assisted Tunneling
6.7 Conductivity of Highly Conducting Polymers
6.8 Magnetoresistance
References
Chapter 7: Superconductivity
7.1 Basic Phenomena
7.2 Measuring Superconductivity
7.3 Applications of Superconductivity
7.4 Superconductivity and Dimensionality
7.5 Organic Superconductors
7.6 Future Prospects
References
Chapter 8: Charge Density Waves
8.1 Introduction
8.2 Coulomb Interaction, 4
k
F
Charge Density Waves, Spin Peierls Waves, Spin Density Waves
8.3 Phonon Dispersion Relation, Phase and Amplitude Mode in Charge Density Wave Excitations
8.4 Electronic Structure, Peierls–Fröhlich Mechanism of Superconductivity
8.5 Pinning, Commensurability, Solitons
8.6 Field-Induced Spin Density Waves and the Quantized Hall Effect
References
Chapter 9: Molecular-Scale Electronics
9.1 Miniaturization
9.2 Information in Molecular Electronics
9.3 Early and Radical Concepts
9.4 Carbon Nanotubes
References
Chapter 10: Molecular Materials for Electronics
10.1 Introduction
10.2 Switching Molecular Devices
10.3 Organic Light-Emitting Devices
10.4 Solar Cells
10.5 Organic Field Effect Transistors
10.6 Organic Thermoelectrics
10.7 Summary
References
Chapter 11: Even More Applications
11.1 Introduction
11.2 Superconductivity and High Conductivity
11.3 Electromagnetic Shielding
11.4 Field Smoothening in Cables
11.5 Capacitors
11.6 Through-Hole Electroplating
11.7 Loudspeakers
11.8 Antistatic Protective Bags
11.9 Other Electrostatic Dissipation Applications
11.10 Conducting Polymers for Welding of Plastics
11.11 Polymer Batteries
11.12 Electrochemical Polymer Actuators
11.13 Electrochromic Displays, Smart Windows, and Transparent Conducting Films
11.14 Electrochemical Sensors
11.15 Gas-Separating Membranes
11.16 Hydrogen Storage
11.17 Corrosion Protection
11.18 Holographic Storage and Holographic Computing
11.19 Biocomputing
11.20 Outlook
References
Chapter 12: Finally
Reference
Glossary and Acronyms
Index
End User License Agreement
xi
xii
xiii
xv
xvii
xviii
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
105
106
107
108
109
110
111
112
113
114
115
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
Cover
Table of Contents
Preface to the Third Edition
Begin Reading
Chapter 1: Introduction
Figure 1.1 Simultaneously with Herbert Marcuse's book “One-Dimensional Man” [1], which widely influenced the youth movement of the 1960s, Little's article on “Possibility of Synthesizing an Organic Superconductor” [2] was published, motivating many physicists and chemists to investigate low-dimensional solids.
Figure 1.2 An “external approach” to one-dimensionality. A man tries to draw a wire until it is thin enough to be regarded as one-dimensional. Metallic wires can be made as thin as 1 µm in diameter, but this is still far away from being one-dimensional. (By lithographic processes, semiconductor structures can be made narrow enough to exhibit one-dimensional properties.)
Figure 1.3 Electrons in small and large boxes and energy spacing of the eigenstates.
Figure 1.4 Experiments on individual chains are difficult to perform. But bundles of chains are quite common, for example, fibers of polyacetylene.
Figure 1.5 Crystal surface are excellent two-dimensional systems. The man above tries to improve the crystal face by mechanical polishing. The qualities achieved by this method are not sufficient for surface science. Surface scientists cleave their samples under ultrahigh vacuum conditions and use freshly cleaved surfaces for their experiments.
Figure 1.6 Open Fermi surfaces, analogous to merged soap bubbles, as a criterion of low-dimensionality. The Fermi surface belongs to a solid that is essentially two dimensional. The solid will have no electronic states contributing to electrical conductivity along the axial direction but will easily conduct radially, normal to the axis.
Figure 1.7 Diamond lattice.
Figure 1.8 Graphite lattice.
Figure 1.9 One-dimensional carbon: cumulene.
Figure 1.10 One-dimensional carbon: polycarbyne.
Figure 1.11 Polyethylene, shown at the top as we might imagine the polymerization of ethylene, shown at the bottom as we might imagine the arrangement of bonding.
Figure 1.12 Polyacetylene, the prototype polyene, the simplest polymer with conjugated double bonds.
Figure 1.13 Polyacetylene using a simplified notation.
Figure 1.14 A fullerene molecule. This is an example of a C
60
, but much larger cages can be made.
Figure 1.15 The fullerene crystal lattice: “fullerite.” These compounds have a rich chemistry. They can be doped by placing atoms between the balls, inside the balls, and so on.
Figure 1.16 A very important aspect of one-dimensionality is that obstacles cannot be circumvented.
Figure 1.17 Bond percolation demonstration on a two-dimensional grid, where bonds are successively cut in a random way. (After Zallen [19].)
Figure 1.18 Density of state function at the band edge in three-, two-, and one-dimensional electronic systems. Note the singularity which occurs in the one-dimensional case.
Figure 1.19 Haiku from the ICSM '86 closing ceremony session in Kyoto [23].
Chapter 2: One-Dimensional Substances
Figure 2.1 Little's superconductor [1]. Specially designed groups are attached to polyacetylene chains so that excitations in the substituent “pair” the electrons moving along the chain.
Figure 2.2 Suggestion for a substituent R in Little's superconductor and rearrangement of double bonds upon excitation [1].
Figure 2.3 Plot of annual numbers of publication on solitons laid over Katsushika Hokusai's wood carving “View of Mount Fuji from a wave trough in the open sea off Kanagawa.”
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!