One-Dimensional Metals - Siegmar Roth - E-Book

One-Dimensional Metals E-Book

Siegmar Roth

0,0
142,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials.

In this completely revised and expanded third edition the authors also cover graphene as one of the most important research topics in the field of low dimensional materials for electronic applications. In addition, the topics of nanotubes and nanoribbons are widely enlarged to reflect the research advances of the last years.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 622

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Related Titles

Title Page

Copyright

About the Authors

Preface to the Third Edition

Preface to the Second Edition

Preface to the First Edition

Chapter 1: Introduction

1.1 Dimensionality

1.2 Approaching One-Dimensionality from Outside and from Inside

1.3 Dimensionality of Carbon Solids

1.4 Peculiarities of One-Dimensional Systems

References

Chapter 2: One-Dimensional Substances

2.1 A15 Compounds

2.2 Krogmann Salts

2.3 Alchemists' Gold

2.4 Bechgaard Salts and Other Charge Transfer Compounds

2.5 Polysulfurnitride

2.6 Phthalocyanines and Other Macrocycles

2.7 Transition Metal Chalcogenides and Halides

2.8 Conducting Polymers

2.9 Halogen-Bridged Mixed-Valence Transition Metal Complexes

2.10 Miscellaneous

2.11 Isolated Nanowires

2.12 Summary

References

Chapter 3: One-Dimensional Solid-State Physics

3.1 Crystal Lattice and Translation Symmetry

3.2 Reciprocal Lattice, Reciprocal Space

3.3 The Dynamic Crystal and Dispersion Relations

3.4 Phonons and Electrons Are Different

3.5 Summary

References

Chapter 4: Electron–Phonon Coupling and the Peierls Transition

4.1 The Peierls Distortion

4.2 Phonon Softening and the Kohn Anomaly

4.3 Fermi Surface Warping

4.4 Beyond Electron–Phonon Coupling

References

Chapter 5: Conducting Polymers: Solitons and Polarons

5.1 General Remarks

5.2 Conjugated Double Bonds

5.3 A Molecular Picture

5.4 Conjugational Defects

5.5 Solitons

5.6 Generation of Solitons

5.7 Nondegenerate Ground-State Polymers: Polarons

5.8 Fractional Charges

5.9 Soliton Lifetime

References

Chapter 6: Conducting Polymers: Conductivity

6.1 General Remarks on Conductivity

6.2 Measuring Conductivities

6.3 Conductivity in One Dimension: Localization

6.4 Conductivity and Solitons

6.5 Experimental Data

6.6 Hopping Conductivity: Variable Range Hopping vs. Fluctuation-Assisted Tunneling

6.7 Conductivity of Highly Conducting Polymers

6.8 Magnetoresistance

References

Chapter 7: Superconductivity

7.1 Basic Phenomena

7.2 Measuring Superconductivity

7.3 Applications of Superconductivity

7.4 Superconductivity and Dimensionality

7.5 Organic Superconductors

7.6 Future Prospects

References

Chapter 8: Charge Density Waves

8.1 Introduction

8.2 Coulomb Interaction, 4

k

F

Charge Density Waves, Spin Peierls Waves, Spin Density Waves

8.3 Phonon Dispersion Relation, Phase and Amplitude Mode in Charge Density Wave Excitations

8.4 Electronic Structure, Peierls–Fröhlich Mechanism of Superconductivity

8.5 Pinning, Commensurability, Solitons

8.6 Field-Induced Spin Density Waves and the Quantized Hall Effect

References

Chapter 9: Molecular-Scale Electronics

9.1 Miniaturization

9.2 Information in Molecular Electronics

9.3 Early and Radical Concepts

9.4 Carbon Nanotubes

References

Chapter 10: Molecular Materials for Electronics

10.1 Introduction

10.2 Switching Molecular Devices

10.3 Organic Light-Emitting Devices

10.4 Solar Cells

10.5 Organic Field Effect Transistors

10.6 Organic Thermoelectrics

10.7 Summary

References

Chapter 11: Even More Applications

11.1 Introduction

11.2 Superconductivity and High Conductivity

11.3 Electromagnetic Shielding

11.4 Field Smoothening in Cables

11.5 Capacitors

11.6 Through-Hole Electroplating

11.7 Loudspeakers

11.8 Antistatic Protective Bags

11.9 Other Electrostatic Dissipation Applications

11.10 Conducting Polymers for Welding of Plastics

11.11 Polymer Batteries

11.12 Electrochemical Polymer Actuators

11.13 Electrochromic Displays, Smart Windows, and Transparent Conducting Films

11.14 Electrochemical Sensors

11.15 Gas-Separating Membranes

11.16 Hydrogen Storage

11.17 Corrosion Protection

11.18 Holographic Storage and Holographic Computing

11.19 Biocomputing

11.20 Outlook

References

Chapter 12: Finally

Reference

Glossary and Acronyms

Index

End User License Agreement

Pages

xi

xii

xiii

xv

xvii

xviii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

105

106

107

108

109

110

111

112

113

114

115

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Guide

Cover

Table of Contents

Preface to the Third Edition

Begin Reading

List of Illustrations

Chapter 1: Introduction

Figure 1.1 Simultaneously with Herbert Marcuse's book “One-Dimensional Man” [1], which widely influenced the youth movement of the 1960s, Little's article on “Possibility of Synthesizing an Organic Superconductor” [2] was published, motivating many physicists and chemists to investigate low-dimensional solids.

Figure 1.2 An “external approach” to one-dimensionality. A man tries to draw a wire until it is thin enough to be regarded as one-dimensional. Metallic wires can be made as thin as 1 µm in diameter, but this is still far away from being one-dimensional. (By lithographic processes, semiconductor structures can be made narrow enough to exhibit one-dimensional properties.)

Figure 1.3 Electrons in small and large boxes and energy spacing of the eigenstates.

Figure 1.4 Experiments on individual chains are difficult to perform. But bundles of chains are quite common, for example, fibers of polyacetylene.

Figure 1.5 Crystal surface are excellent two-dimensional systems. The man above tries to improve the crystal face by mechanical polishing. The qualities achieved by this method are not sufficient for surface science. Surface scientists cleave their samples under ultrahigh vacuum conditions and use freshly cleaved surfaces for their experiments.

Figure 1.6 Open Fermi surfaces, analogous to merged soap bubbles, as a criterion of low-dimensionality. The Fermi surface belongs to a solid that is essentially two dimensional. The solid will have no electronic states contributing to electrical conductivity along the axial direction but will easily conduct radially, normal to the axis.

Figure 1.7 Diamond lattice.

Figure 1.8 Graphite lattice.

Figure 1.9 One-dimensional carbon: cumulene.

Figure 1.10 One-dimensional carbon: polycarbyne.

Figure 1.11 Polyethylene, shown at the top as we might imagine the polymerization of ethylene, shown at the bottom as we might imagine the arrangement of bonding.

Figure 1.12 Polyacetylene, the prototype polyene, the simplest polymer with conjugated double bonds.

Figure 1.13 Polyacetylene using a simplified notation.

Figure 1.14 A fullerene molecule. This is an example of a C

60

, but much larger cages can be made.

Figure 1.15 The fullerene crystal lattice: “fullerite.” These compounds have a rich chemistry. They can be doped by placing atoms between the balls, inside the balls, and so on.

Figure 1.16 A very important aspect of one-dimensionality is that obstacles cannot be circumvented.

Figure 1.17 Bond percolation demonstration on a two-dimensional grid, where bonds are successively cut in a random way. (After Zallen [19].)

Figure 1.18 Density of state function at the band edge in three-, two-, and one-dimensional electronic systems. Note the singularity which occurs in the one-dimensional case.

Figure 1.19 Haiku from the ICSM '86 closing ceremony session in Kyoto [23].

Chapter 2: One-Dimensional Substances

Figure 2.1 Little's superconductor [1]. Specially designed groups are attached to polyacetylene chains so that excitations in the substituent “pair” the electrons moving along the chain.

Figure 2.2 Suggestion for a substituent R in Little's superconductor and rearrangement of double bonds upon excitation [1].

Figure 2.3 Plot of annual numbers of publication on solitons laid over Katsushika Hokusai's wood carving “View of Mount Fuji from a wave trough in the open sea off Kanagawa.”

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!