68,99 €
Provides new insights into the accuracy and value of online panels for completing surveys
Over the last decade, there has been a major global shift in survey and market research towards data collection, using samples selected from online panels. Yet despite their widespread use, remarkably little is known about the quality of the resulting data.
This edited volume is one of the first attempts to carefully examine the quality of the survey data being generated by online samples. It describes some of the best empirically-based research on what has become a very important yet controversial method of collecting data. Online Panel Research presents 19 chapters of previously unpublished work addressing a wide range of topics, including coverage bias, nonresponse, measurement error, adjustment techniques, the relationship between nonresponse and measurement error, impact of smartphone adoption on data collection, Internet rating panels, and operational issues.
The datasets used to prepare the analyses reported in the chapters are available on the accompanying website: www.wiley.com/go/online_panel
This book will be an invaluable resource for opinion and market researchers, academic researchers relying on web-based data collection, governmental researchers, statisticians, psychologists, sociologists, and other research practitioners.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1115
Veröffentlichungsjahr: 2014
Cover
Wiley Series in Survey Methodology
Title Page
Copyright
Preface
Content of the book
References
Acknowledgments
Companion datasets and book format
References
About the Editors
About the Contributors
Chapter 1: Online panel research: History, concepts, applications and a look at the future
1.1 Introduction
1.2 Internet penetration and online panels
1.3 Definitions and terminology
1.4 A brief history of online panels
1.5 Development and maintenance of online panels
1.6 Types of studies for which online panels are used
1.7 Industry standards, professional associations' guidelines, and advisory groups
1.8 Data quality issues
1.9 Looking ahead to the future of online panels
References
Chapter 2: A critical review of studies investigating the quality of data obtained with online panels based on probability and nonprobability samples
2.1 Introduction
2.2 Taxonomy of comparison studies
2.3 Accuracy metrics
2.4 Large-scale experiments on point estimates
2.5 Weighting adjustments
2.6 Predictive relationship studies
2.7 Experiment replicability studies
2.8 The special case of pre-election polls
2.9 Completion rates and accuracy
2.10 Multiple panel membership
2.11 Online panel studies when the offline population is less of a concern
2.12 Life of an online panel member
2.13 Summary and conclusion
References
Part I: Coverage
Introduction to Part I
I.1 Coverage bias in online panels
I.2 The chapters in Part I
References
Chapter 3: Assessing representativeness of a probability-based online panel in Germany
3.1 Probability-based online panels
3.2 Description of the GESIS Online Panel Pilot
3.3 Assessing recruitment of the Online Panel Pilot
3.4 Assessing data quality: Comparison with external data
3.5 Results
3.6 Discussion and conclusion
References
Appendix 3.A
Chapter 4: Online panels and validity: Representativeness and attrition in the Finnish eOpinion panel
4.1 Introduction
4.2 Online panels: Overview of methodological considerations
4.3 Design and research questions
4.4 Data and methods
4.5 Findings
4.6 Conclusion
References
Chapter 5: The untold story of multi-mode (online and mail) consumer panels: From optimal recruitment to retention and attrition
5.1 Introduction
5.2 Literature review
5.3 Methods
5.4 Results
5.5 Discussion and conclusion
References
Part II: Nonresponse
Introduction to Part II
II.1 The nonresponse problem
II.2 The nonresponse bias
II.3 Exploring nonresponse
II.4 The chapters in Part II
References
Chapter 6: Nonresponse and attrition in a probability-based online panel for the general population
6.1 Introduction
6.2 Attrition in online panels versus offline panels
6.3 The LISS panel
6.4 Attrition modeling and results
6.5 Comparison of attrition and nonresponse bias
6.6 Discussion and conclusion
References
Chapter 7: Determinants of the starting rate and the completion rate in online panel studies
7.1 Introduction
7.2 Dependent variables
7.3 Independent variables
7.4 Hypotheses
7.5 Method
7.6 Results
7.7 Discussion and conclusion
References
Chapter 8: Motives for joining nonprobability online panels and their association with survey participation behavior
8.1 Introduction
8.2 Motives for survey participation and panel enrollment
8.3 Present study
8.4 Results
8.5 Conclusion
References
Appendix 8.A
Chapter 9: Informing panel members about study results: Effects of traditional and innovative forms of feedback on participation
9.1 Introduction
9.2 Background
9.3 Method
9.4 Results
9.5 Discussion and conclusion
References
Appendix 9.A
Part III: Measurement Error
Introduction to Part III
Measurement Error
References
Chapter 10: Professional respondents in nonprobability online panels
10.1 Introduction
10.2 Background
10.3 Professional respondents and data quality
10.4 Approaches to handling professional respondents
10.5 Research hypotheses
10.6 Data and methods
10.7 Results
10.8 Satisficing behavior
10.9 Discussion
References
Appendix 10.A
Chapter 11: The impact of speeding on data quality in nonprobability and freshly recruited probability-based online panels
11.1 Introduction
11.2 Theoretical framework
11.3 Data and methodology
11.4 Response time as indicator of data quality
11.5 How to measure “speeding”?
11.6 Does speeding matter?
11.7 Conclusion
References
Part IV: Weighting Adjustments
Introduction to Part IV
IV.1 Panel problems
IV.2 Weighting adjustments
IV.3 Effective weighting
IV.4 Weighting adjustment techniques
IV.5 Generalized regression estimation
IV.6 Raking ratio estimation
IV.7 Weighting adjustment with a reference survey
IV.8 Propensity weighting
IV.9 The chapters in Part IV
References
Chapter 12: Improving web survey quality: Potentials and constraints of propensity score adjustments
Introduction
12.2 Survey quality and sources of error in nonprobability web surveys
12.3 Data, bias description, and PSA
12.4 Results
12.5 Potentials and constraints of PSA to improve nonprobability web survey quality: Conclusion
References
Appendix 12.A
Chapter 13: Estimating the effects of nonresponses in online panels through imputation
13.1 Introduction
13.2 Method
13.3 Measurements
13.4 Findings
13.5 Discussion and conclusion
Acknowledgement
References
Part V: Nonresponse and Measurement Error
Introduction to Part V
Nonresponse and measurement error
Chapter 14: The relationship between nonresponse strategies and measurement error: Comparing online panel surveys to traditional surveys
14.1 Introduction
14.2 Previous research and theoretical overview
14.3 Does interview mode moderate the relationship between nonresponse strategies and data quality?
14.4 Data
14.5 Measures
14.6 Results
14.7 Discussion and conclusion
References
Chapter 15: Nonresponse and measurement error in an online panel: Does additional effort to recruit reluctant respondents result in poorer quality data?
15.1 Introduction
15.2 Understanding the relation between nonresponse and measurement error
15.3 Response propensity and measurement error in panel surveys
15.4 The present study
15.5 Data
15.6 Analytical strategy
15.7 Results
15.8 Discussion and conclusion
References
Part VI: Special Domains
Introduction to Part VI
Special domains
References
Chapter 16: An empirical test of the impact of smartphones on panel-based online data collection
16.1 Introduction
16.2 Method
16.3 Results
16.4 Discussion and conclusion
References
Chapter 17: Internet and mobile ratings panels
17.1 Introduction
17.2 History and development of Internet ratings panels
17.3 Recruitment and panel cooperation
17.4 Compliance and panel attrition
17.5 Measurement issues
17.6 Long tail and panel size
17.7 Accuracy and validation studies
17.8 Statistical adjustment and modeling
17.9 Representative research
17.10 The future of Internet audience measurement
References
Part VII: Operational Issues in Online Panels
Introduction to Part VII
VII.1 Management of sampling and data quality processes in online panels
VII.2 The chapters in Part VII
Chapter 18: Online panel software
18.1 Introduction
18.2 What does online panel software do?
18.3 Survey of software providers
18.4 A typology of panel research software
18.5 Support for the different panel software typologies
18.7 Panel recruitment and profile data
18.8 Panel administration
18.9 Member portal
18.10 Sample administration
18.11 Data capture, data linkage and interoperability
18.12 Diagnostics and active panel management
18.13 Conclusion and further work
References
Chapter 19: Validating respondents' identity in online samples: The impact of efforts to eliminate fraudulent respondents
19.1 Introduction
19.2 The 2011 study
19.3 The 2012 study
19.4 Results
19.5 Discussion
19.6 Conclusion
References
Appendix 19.A
WILEY SERIES IN SURVEY METHODOLOGY
Index
End User License Agreement
xv
xvi
xvii
xix
xx
xxi
xxii
xxiii
xxiv
xxv
xxvi
xxvii
xxviii
xxix
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
219
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
55
56
57
58
59
60
127
128
129
130
131
132
133
215
216
217
263
264
265
266
267
268
269
270
271
272
311
312
363
364
365
409
410
411
412
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
Cover
Table of Contents
Preface
Part I: Coverage
Chapter 1: Online panel research: History, concepts, applications and a look at the future
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 10.1
Figure 11.1
Figure 11.2
Figure 11.3
Figure 12.1
Figure 12.2
Figure 13.1
Figure 15.1
Figure 15.2
Figure 17.1
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 3.1
Table 3.2
Table 3.A.1
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.A.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 9.6
Table 9.A.1
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 11.1
Table 11.2
Table 11.3
Table 11.4
Table 11.5
Table 11.6
Table 11.7
Table 11.8
Table 11.9
Table 11.10
Table 11
Table 12
Table 12.A.1
Table 12.A.2
Table 12.1
Table 12.A.3
Table 12.A.5
Table 12.2
Table 12.3
Table 12.A.6
Table 12.A.7
Table 13.3
Table 13.1
Table 13.2
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 14.5
Table 15.1
Table 15.2
Table 15.3
Table 15.4
Table 15.5
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6
Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 18.1
Table 18.2
Table 18.3
Table 18.4
Table 18.5
Table 18.6
Table 18.7
Table 18.8
Table 18.9
Table 18.10
Table 18.11
Table 18.12
Table 18.13
Table 18.14
Table 18.15
Table 18.16
Table 18.17
Table 18.18
Table 18.19
Table 19.1
Table 19.2
Table 19.3
WILEY SERIES IN SURVEY METHODOLOGY
Established in Part by WALTER A. SHEWHART and SAMUEL S. WILKS
Editors: Mick P. Couper, Graham Kalton, J. N. K. Rao, Norbert Schwarz, Christopher Skinnerx
Editor Emeritus: Robert M. Groves
A complete list of the titles in this series appears at the end of this volume.
Mario Callegaro
Survey Research Scientist, Quantitative Marketing Team, Google UK
Reg Baker
Senior Consultant, Market Strategies International, USA
Jelke Bethlehem
Senior Advisor, Statistics Netherlands, The Netherlands
Anja S. Göritz
Professor of Occupational and Consumer Psychology
University of Freiburg, Germany
Jon A. Krosnick
Professor of Political Science, Communication and Psychology
Stanford University, USA
Paul J. Lavrakas
Independent Research Psychologist/Research Methodologist, USA
This edition first published 2014
© 2014 John Wiley & Sons, Ltd
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.
The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.
Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
Library of Congress Cataloging-in-Publication Data
Online panel research : a data quality perspective / edited by Mario Callegaro, Reg Baker, Jelke Bethlehem, Anja Goritz, Jon A. Krosnick, Paul J. Lavrakas.
pages cm
Includes bibliographical references and index.
ISBN 978-1-119-94177-4 (pbk.)
1. Panel analysis. 2. Internet research. 3. Marketing research–Methodology 4. Social sciences–Methodology
I. Callegaro, Mario, editor of compilation.
H61.26.O55 2014
001.4′33–dc23
2013048411
A catalogue record for this book is available from the British Library.
ISBN: 978-1-119-94177-4
Web survey data collected via online panels are an important source of information that thousands of researchers use to gain insight and which influence their decisions about the topics under study. Thousands upon thousands of completed surveys can be collected in a few days and for little money, as low as $2 per completed questionnaire (Terhanian & Bremer, 2012). Therefore, with the data user's point of view in mind, it is prudent to ask the questions: how reliable are these data and what risks do we assume when we use them?
This edited volume is one of the first attempts to carefully examine the quality of data from online panels. The book is organized into seven parts and contains 19 chapters. The first two chapters are critical reviews of what is known so far about the development and current status of online panel research and the quality of data obtained using these panels in terms of point estimates, relationships across variables, and reproducibility of results.
Part I discusses coverage error, in which three international case studies from probability-based panels in Germany, Finland, and the United States are reviewed.
Nonresponse is a much-debated topic that is addressed in Part II, in four chapters, examining the issue related to nonresponse in online panels from different points of view. Chapter 6 looks at nonresponse and attrition in the Dutch LISS panel, followed by Chapter 7, a review of determinants of response quantity, analyzing a large dataset of online panel surveys. In Chapter 8, data from Austria are presented to advance understanding of the reasons respondents join an online panel. The final chapter explores the effectiveness of experiments in engaging panel members by providing feedback on their participation.
Part III examines measurement error from two angles: the issue of professional respondents (Chapter 10) and the issue of speeding when completing web surveys (Chapter 11).
In Part IV, the next issue explored is adjustment of data obtained from online panels. Chapter 12 describes an example of how propensity score weighting was used to calibrate a non-probability panel and its effect when comparing the results to official statistics benchmarks. Imputation, which is another way to compensate for nonresponse, is the topic of Chapter 13. Taking advantage of a unique study in which online panel members were invited to join a specific project and thus some variables for the nonrespondents were already known, the chapter evaluates the effectiveness of imputation.
Survey researchers have demonstrated on many occasions (e.g., Groves & Peytcheva, 2008) the importance of examining the relation between nonresponse and measurement error. This relation is evaluated in Part V, in contributions by two teams, one from the United States (Chapter 14) and one from the United Kingdom (Chapter 15), both using multiple datasets. These complementary chapters demonstrate, using advanced analytics, the numerous ways of exploring the relation between nonresponse and measurement error.
Part IV on special domains looks at two recent topics: (1) the impact of smartphones on panel data collection in Chapter 16; and (2) online ratings panels in Chapter 17. In the latter type of panel, the Internet behavior of its members is tracked, providing a constant flow of traffic that can be analyzed.
The volume ends with Part VII, an examination of two important operational issues: (1) the software used to manage online panels in Chapter 18; and (2) how to validate respondents who join a panel in Chapter 19.
Groves, R. M., & Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: A meta-analysis.
Public Opinion Quarterly
,
72
, 167–189.
Terhanian, G., & Bremer, J. (2012). A smarter way to select respondents for surveys?
International Journal of Market Research
,
54
, 751–780.
The book's initial idea was suggested by Lars Lyberg to Wiley. We are indebted to Lars for his forward thinking. We thank our Wiley editors Richard Davies, Kathryn Sharples, Heather Kay, and Jo Taylor.
All authors agreed to make the datasets used in the analysis publicly available. Wiley is providing a section of the book's webpage dedicated to showing readers how to obtain the anonymized datasets. The GESIS data archive kindly provided support for some datasets not archived elsewhere. We hope other similar volumes will do the same in the future. Transparency like this is a key to scientific credibility and progress. By allowing other scholars to analyze and enhance the findings of studies, these chapters will have even more impact and value over time. (Cooper, 2013; Fang, Steen, & Casadevall, 2012).
The book is released in different formats: print, e-book, and pdf version. Single chapters can be purchased or accessed online on the Wiley website where an abstract is also available. Online appendies and instructions on how to access the datasets used in the chapters are available at: www.wiley.com/go/online_panel
Cooper, J. (2013). On fraud, deceit and ethics.
Journal of Experimental Social Psychology
,
49
, 314.
Fang, F. C., Steen, R. G., & Casadevall, A. (2012). Misconduct accounts for the majority of retracted scientific publications.
Proceedings of the National Academy of Sciences of the United States of America
,
109
, 17028–17033.
Mario Callegaro Reg P. Baker Jelke Bethlehem Anja S. Göritz Jon A. Krosnick Paul J. Lavrakas
Reg Baker is the former President and Chief Operating Officer of Market Strategies International, a full-service research company specializing in healthcare, energy, financial services, telecommunications, and information technology. Prior to joining Market Strategies, he was Vice President for Research Operations at NORC where he oversaw the national field staff, the company's CATI centers, and its technology infrastructure.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
