Organic Redox Systems - Tohru Nishinaga - E-Book

Organic Redox Systems E-Book

Tohru Nishinaga

0,0
171,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Providing a thorough overview of leading research from internationally-recognized contributing authors, this book describes methods for the preparation and application of redox systems for organic electronic materials like transistors, photovoltaics, and batteries.

  • Covers bond formation and cleavage, supramolecular systems, molecular design, and synthesis and properties
  • Addresses preparative methods, unique structural features, physical properties, and material applications of redox active p-conjugated systems
  • Offers a useful guide for both academic and industrial chemists involved with organic electronic materials
  • Focuses on the transition-metal-free redox systems composed of organic and organo main group compounds

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1085

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

COVER

TITLE PAGE

LIST OF CONTRIBUTORS

PREFACE

1 INTRODUCTION: BASIC CONCEPTS AND A BRIEF HISTORY OF ORGANIC REDOX SYSTEMS

1.1 REDOX REACTION OF ORGANIC MOLECULES

1.2 REDOX POTENTIAL IN NONAQUEOUS SOLVENTS

1.3 A BRIEF HISTORY OF ORGANIC REDOX COMPOUNDS

REFERENCES

2 REDOX-MEDIATED REVERSIBLE σ-BOND FORMATION/CLEAVAGE

2.1 DYNAMIC REDOX (“

DYREX

”) SYSTEMS

2.2 ADVANCED ELECTROCHROMIC RESPONSE OF “ENDO”-TYPE

DYREX

SYSTEMS EXHIBITING REDOX SWITCHING OF A σ-BOND

2.3 ADVANCED ELECTROCHROMIC RESPONSE OF “EXO”-TYPE

DYREX

SYSTEMS EXHIBITING REDOX SWITCHING OF A σ-BOND

2.4 PROSPECT: REDOX SYSTEMS WITH MULTIPLE

DYREX

UNITS

REFERENCES

3 REDOX-CONTROLLED INTRAMOLECULAR MOTIONS TRIGGERED BY π-DIMERIZATION AND PIMERIZATION PROCESSES

3.1 INTRODUCTION

3.2 OLIGOTHIOPHENES

3.3 PHENOTHIAZINE

3.4 NAPHTHALENE AND PERYLENE BISIMIDES

3.5

para

-PHENYLENEDIAMINE

3.6 PYRIDINYL RADICALS

3.7 VIOLOGEN DERIVATIVES

3.8 VERDAZYL

3.9 PHENALENYL

3.10 PORPHYRINS

3.11 BENZENOID

3.12 CYCLOPHANE

3.13 TETRATHIAFULVALENE

3.14 CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

4 TETRATHIAFULVALENE: A REDOX UNIT FOR FUNCTIONAL MATERIALS AND A BUILDING BLOCK FOR SUPRAMOLECULAR SELF-ASSEMBLY

4.1 INTRODUCTION: PAST AND PRESENT OF TTF CHEMISTRY

4.2 BASIC REDOX PROPERTIES OF TTF AND STACKED TTF

4.3 TTF AS A FAITHFUL REDOX ACTIVE UNIT IN FUNCTIONAL MATERIALS

4.4 ELECTROCONDUCTING PROPERTIES OF TTF DERIVATIVES BASED ON SUPRAMOLECULAR SELF-ASSEMBLY

4.5 SUMMARY AND OUTLOOK

REFERENCES

5 ROBUST AROMATIC CATION RADICALS AS REDOX TUNABLE OXIDANTS

5.1 INTRODUCTION

5.2 DESIGNING MOLECULES FOR THE FORMATION OF STABLE CATION RADICALS (CRs)—A CASE STUDY

5.3 METHODS OF PREPARATIVE ISOLATION OF AROMATIC CATION RADICALS

5.4 QUANTITATIVE OXIDATION OF ELECTRON DONORS USING

AS ONE-ELECTRON OXIDANT

5.5 READILY AVAILABLE ELECTRON DONORS FOR THE REDOX-TUNABLE AROMATIC OXIDANTS

5.6 CONCLUSION

REFERENCES

6 AIR-STABLE REDOX-ACTIVE NEUTRAL RADICALS: TOPOLOGICAL SYMMETRY CONTROL OF ELECTRONIC-SPIN, MULTICENTERED CHEMICAL BONDING, AND ORGANIC BATTERY APPLICATION

6.1 INTRODUCTION

6.2 OPEN-SHELL GRAPHENE FRAGMENT: DESIGN AND SYNTHESIS OF AIR-STABLE CARBON-CENTERED NEUTRAL RADICALS BASED ON FUSED-POLYCYCLIC Π-SYSTEM

6.3 TOPOLOGICAL SYMMETRY CONTROL OF ELECTRONIC-SPIN DENSITY DISTRIBUTION BY REDOX AND OTHER EXTERNAL STIMULI

6.4 CONTROL OF ELECTRONIC-SPIN STRUCTURE AND OPTICAL PROPERTIES OF MULTICENTERED C

C BONDS

6.5 RECHARGEABLE BATTERIES USING ORGANIC ELECTRODE-ACTIVE MATERIALS

6.6 MOLECULAR SPIN BATTERIES: DESIGN CRITERIA AND PERFORMANCE OF HIGH CAPACITY ORGANIC RECHARGEABLE BATTERY MATERIALS

6.7 CONCLUSION

ACKNOWLEDGEMENT

REFERENCES

7 TRIARYLAMINE-BASED ORGANIC MIXED-VALENCE COMPOUNDS: THE ROLE OF THE BRIDGE

7.1 INTRODUCTION

7.2 THE MV CONCEPT

7.3 THE REDOX CENTER

7.4 THE BRIDGE

7.5 THE LENGTH OF THE BRIDGE

7.6 CHANGING THE CONNECTIVITY

7.7 TWISTING THE BRIDGE

7.8 SATURATED VS UNSATURATED BRIDGE

7.9 META VS PARA CONJUGATION

7.10 SWITCHING THE BRIDGE

7.11 METAL ATOMS AS THE BRIDGE

7.12 AND FINALLY: WITHOUT A BRIDGE

ACKNOWLEDGMENT

REFERENCES

8 MAGNETIC PROPERTIES OF MULTIRADICALS BASED ON TRIARYLAMINE RADICAL CATIONS

8.1 INTRODUCTION

8.2 TRIARYLAMINE RADICAL CATIONS AS SYNTHETIC REAGENTS FOR PREPARATION OF DONOR RADICAL CATIONS WITH VARIOUS COUNTER ANIONS

8.3 STABLE TRIARYLAMINES WITHOUT

para

-SUBSTITUENTS

8.4 MODELS OF INTERMOLECULAR EXCHANGE INTERACTION IN HETEROATOMIC SYSTEMS

8.5 MAGNETIC SUSCEPTIBILITY AND TEMPERATURE DEPENDENCE

8.6 POLY(DIARYLAMINO BENZENE) POLY(RADICAL CATION)S

8.7 RADICAL SUBSTITUTED TRIARYLAMINES

8.8 TOWARDS FURTHER DEVELOPMENTS

REFERENCES

9 OPEN-SHELL π-CONJUGATED HYDROCARBONS

9.1 INTRODUCTION

9.2 MONORADICALS

9.3 BIRADICALS

9.4 POLYRADICALS

REFERENCES

10 INDENOFLUORENES AND RELATED STRUCTURES

10.1 INTRODUCTION

10.2 INDENO[1,2-

a

]FLUORENES

10.3 INDENO[1,2-

b

]FLUORENES

10.4 INDENO[2,1-

a

]FLUORENES

10.5 INDENO[2,1-

b

]FLUORENES

10.6 INDENO[2,1-

c

]FLUORENES

10.7 FLUORENO[4,3-

c

]FLUORENE

10.8 INDACENEDITHIOPHENES

10.9 DIINDENO[

n

]THIOPHENES

10.10 CONCLUSIONS

ACKNOWLEDGMENT

REFERENCES

11 THIENOACENES

11.1 INTRODUCTION

11.2 SYNTHESIS OF THIENOACENES VIA THIENANNULATION

11.3 MOLECULAR ELECTRONIC STRUCTURES

11.4 APPLICATION TO ELECTRONIC DEVICES

11.5 SUMMARY

REFERENCES

12 CATIONIC OLIGOTHIOPHENES: p-DOPED POLYTHIOPHENE MODELS AND APPLICATIONS

12.1 INTRODUCTION

12.2 DESIGN PRINCIPLE AND SYNTHETIC METHODS

12.3 ELECTROCHEMISTRY

12.4 STRUCTURAL AND SPECTROSCOPIC PROPERTIES AS p-DOPED POLYTHIOPHENE MODELS

12.5 APPLICATION TO SUPRAMOLECULAR SYSTEMS

12.6 CONCLUSION AND OUTLOOK

REFERENCES

13 ELECTRON-DEFICIENT CONJUGATED HETEROAROMATICS

13.1 INTRODUCTION

13.2 HEXAFLUOROCYCLOPENTA[

c

]THIOPHENE AND ITS CONTAINING OLIGOTHIIOPHENES

13.3 DIFLUOROMETHYLENE-BRIDGED BITHIOPHENE AND ITS CONTAINING OLIGOTHIIOPHENES

13.4 π-CONJUGATED SYSTEMS HAVING THIAZOLE-BASED CARBONYL-BRIDGED COMPOUNDS

13.5 DIFLUORODIOXOCYCLOPENTENE-ANNELATED THIOPHENE AND ITS CONTAINING OLIGOTHIIOPHENES

13.6 DIOXOCYCLOALKENE-ANNELATED THIOPHENE AND ITS CONTAINING OLIGOTHIIOPHENES

13.7 DICYANOMETHYLENE-SUBSTITUTED CYCLOPENTA[

b

]THIOPHENE AND ITS CONTAINING π-CONJUGATED SYSTEM

13.8 ELECTRON-DEFICIENT π-CONJUGATED SYSTEM CONTAINING DICYANOMETHYLENE-SUBSTITUTED CYCLOPENTA[

b

]THIOPHENE TOWARD ORGANIC PHOTOVOLTAICS

13.9 CONCLUSION

REFERENCES

14 OLIGOFURANS

14.1 BACKGROUND

14.2 SYNTHESIS AND REACTIVITY

14.3 PROPERTIES OF OLIGOFURANS IN THE NEUTRAL STATE

14.4 PROPERTIES OF CATIONIC OLIGOFURANS

14.5 POLYFURANS

14.6 DEVICES WITH FURAN-CONTAINING MATERIALS

14.7 SUMMARY AND OUTLOOK

REFERENCES

15 OLIGOPYRROLES AND RELATED COMPOUNDS

15.1 INTRODUCTION

15.2 LINEAR OLIGOPYRROLES

15.3 CYCLIC OLIGOPYRROLES

15.4 PYRROLE-FUSED AZACORONENES

15.5 CONCLUSIONS

REFERENCES

16 PHOSPHOLES AND RELATED COMPOUNDS: SYNTHESES, REDOX PROPERTIES, AND APPLICATIONS TO ORGANIC ELECTRONIC DEVICES

16.1 INTRODUCTION

16.2 SYNTHESIS OF π-CONJUGATED PHOSPHOLE DERIVATIVES

16.3 REDOX POTENTIALS OF PHOSPHOLE DERIVATIVES

16.4 ELECTROCHEMICAL BEHAVIORS OF PHOSPHOLE DERIVATIVES

16.5 APPLICATIONS OF PHOSPHOLE-BASED MATERIALS TO ORGANIC ELECTRONIC DEVICES

REFERENCES

17 ELECTROCHEMICAL BEHAVIOR AND REDOX CHEMISTRY OF BOROLES

17.1 INTRODUCTION

17.2 PREPARATION

17.3 CHEMICAL REACTIVITY

17.4 REDOX CHEMISTRY

17.5 CONCLUSIONS AND OUTLOOK

REFERENCES

18 ISOLATION AND CRYSTALLIZATION OF RADICAL CATIONS BY WEAKLY COORDINATING ANIONS

18.1 INTRODUCTION

18.2 RADICAL CATIONS AND DICATIONS BASED ON TRIARYLAMINES

18.3 RADICAL CATIONS CONTAINING PHOSPHORUS

18.4 THE RADICAL CATION CONTAINING A SELENIUM–SELENIUM THREE-ELECTRON σ-BOND

18.5 RADICAL CATIONS OF ORGANIC OLIGOMERS (π-DIMERIZATION)

18.6 σ-DIMERIZATION OF RADICAL CATIONS

18.7 CONCLUSION

REFERENCES

19 HEAVIER GROUP 14 ELEMENT REDOX SYSTEMS

19.1 INTRODUCTION

19.2 REDOX SYSTEMS OF THE HEAVIER GROUP 14 ELEMENTS E (E = Si–Pb)

19.3 SUMMARY

REFERENCES

20 π-ELECTRON REDOX SYSTEMS OF HEAVIER GROUP 15 ELEMENTS

20.1 INTRODUCTION

20.2 THE REDOX BEHAVIOR OF DIPNICTENES

20.3 THE REDOX BEHAVIOR OF π-CONJUGATED SYSTEMS OF HEAVIER DIPNICTENES

20.4 THE REDOX BEHAVIOR OF d–π ELECTRON SYSTEMS CONTAINING HEAVIER DIPNICTENES

20.5 CONCLUSION

REFERENCES

INDEX

END USER LICENSE AGREEMENT

List of Tables

Chapter 01

TABLE 1.1 Formal Potentials (V) for the Ferrocene/Ferrocenium Couple vs SCE [16]

Chapter 04

TABLE 4.1 Redox Potentials (V) of 1, 2b, 6, and 7 in PhCN Containing

n

Bu

4

NClO

4

(0.1 M)

TABLE 4.2 Redox Potentials (V) of 15–18, and Absorption Maxima of Their Cation Radicals

Chapter 05

TABLE 5.1 Comparison of X-ray Structures, Oxidation Potentials, and Vertical Ionization Potentials of a Series of Hydroquinone Ethers and UV–vis Absorption Spectra of their Cation Radicals

TABLE 5.2 The Values of ∆

G

1

and ∆

G

2

, Obtained by the Analysis of Redox Titrations and from the Electrochemical Redox Potentials

TABLE 5.3 Compilation of Reversible Oxidation Potentials (

E

ox1

vs Fc/Fc

+

) and UV–vis Absorption Spectra in CH

2

Cl

2

(

λ

max

,

ε

max

) of the Redox Tunable Aromatic Oxidants

Chapter 09

TABLE 9.1 Redox Potentials (in V)

TABLE 9.2 Optical and Electrochemical HOMO–LUMO Energy Gaps (Δ

E

H–L,opt

, Δ

E

H–L,elec

, in eV), the Extent of Singlet Biradical Character (

y

, in %), and Singlet–Triplet Energy Gap (Δ

E

S–T

, in eV) for 35–41

Chapter 10

TABLE 10.1 Electrochemical Data for Compounds 7a, c–f, 12a–f, and 13–15

TABLE 10.2 Redox Potentials of 22a–d, h–l, p–z

TABLE 10.3 Redox Potentials of 32b–d, f

TABLE 10.4 Electrochemical Data for [1,2-

b

]IFs 33b-x

TABLE 10.5 Electrochemical Data for 56, 57, 61a–c and 62a–b

TABLE 10.6 Electrochemical Data for Compounds 72a–i, 73–75, pIDT1–4, and 79–85

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!