139,99 €
Written in four parts, this book provides a dedicated and in-depth reference for blending within the pharmaceutical manufacturing industry. It links the science of blending with regulatory requirements associated with pharmaceutical manufacture. The contributors are a combination of leading academic and industrial experts, who provide an informed and industrially relevant perspective of the topic. This is an essential book for the pharmaceutical manufacturing industry, and related academic researchers in pharmaceutical science and chemical and mechanical engineering.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 990
Veröffentlichungsjahr: 2015
Cover
Title page
Contributor List
Preface
Pharmaceutical Blending and Mixing: Role, Challenges and Trends
Part I: Fundamentals of Mixing
1 Mixing Theory
1.1 Introduction
1.2 Describing Mixtures
1.3 Scale of Scrutiny
1.4 Quantifying Mixedness for Coarse and Fine-Grained Mixtures
1.5
Determining the End-Point of Mixing:
Comparison of Mixing Indices
1.6 Continuous Flow Mixers
References
2 Turbulent Mixing Fundamentals
2.1 Introduction
2.2 The Velocity Field and Turbulence
2.3 Circulation and Macro-Mixing
2.4 Fully Turbulent Limits and the Scaling of Turbulence
2.5 The Spectrum of Turbulent Length Scales, Injection of a Scalar (Either Reagent or Additive) and the Macro-, Meso- and Micro-Scales of Mixing
2.6 Turbulence and Mixing of Solids, Liquids, and Gases
2.7 Specifying Mixing Requirements for a Process
2.8 Conclusions
Notation
References
3 Laminar Mixing Fundamentals
3.1 Laminar Flows
3.2 Mixing in Laminar Flows
3.3 Recent Advances
References
4 Sampling and Determination of Adequacy of Mixing
4.1 Introduction, Process Understanding, and Regulations
4.2 Theory of Sampling
4.3 Sampling of Pharmaceutical Powder Blends
4.4 Stratified Sampling Approach
4.5 Testing
4.6 Process Knowledge/Process Analytical Technology
4.7 Real Time Spectroscopic Monitoring of Powder Blending
4.8 Looking Forward, Recommendations
4.9 Conclusion
4.10 Acknowledgments
References
Part II: Applications
5 Particles and Blending
5.1 Introduction
5.2 Particle Geometry
5.3 Particle Interactions
5.4 Empirical Investigations of Particles and Blending
5.5 Simulation Techniques
References
6 Continuous Powder Mixing
6.1 Introduction
6.2 Overview
6.3 Theoretical Characterization
6.4 Experimental Characterization
6.5 Continuous Mixing Efficiency
6.6 Effects of Process Parameters on Mixing Behavior and Performance
6.7 Mixing Performance
6.8 Conclusions and Continuing Efforts
References
7 Dispersion of Fine Powders in Liquids: Particle Incorporation and Size Reduction
7.1 Particle Incorporation into Liquids
7.2 Break Up of Fine Powder Clusters in Liquids
References
8 Wet Granulation and Mixing
8.1 Introduction
8.2 Nucleation
8.3 Consolidation and Growth
8.4 Breakage
8.5 Endpoint Control
References
9 Emulsions
9.1 Introduction
9.2 Properties of Emulsions
9.3 Emulsion Stability and Surface Forces
9.4 Principles of Emulsion Formation
9.5 Emulsification Equipment
9.6 Concluding Remarks
Nomenclature
Greek symbols
References
10 Mixing of Pharmaceutical Solid-Liquid Suspensions
10.1 Introduction
10.2 Scale-Up of Operations Involving Solid Suspensions
10.3 General Principles of Solid-Liquid Suspensions
10.4 Solids Charging
10.5 Solid Suspension
10.6 Solid Distribution
10.7 Blending in Solid-Liquid Systems
10.8 Mass Transfer
10.9 Size Reduction, Deagglomeration and Attrition
Nomenclature
Greek symbols
Abbreviations
References
Part III: Equipment
11 Powder Blending Equipment
11.1 Introduction
11.2 Blending Mechanisms
11.3 Blend Time
11.4 Fill Level
11.5 Segregation
11.6 Powder Processing Difficulties
11.7 Blender Classification
11.8 Continuous Blenders
11.9 Blender Selection
11.10 Equipment Specifications
References
12 Fluid Mixing Equipment Design
12.1 Introduction
12.2 Equipment Description
12.3 Measurements
12.4 Mixing Classifications
12.5 Mechanical Design
12.6 Static Mixers
12.7 Challenges and Troubleshooting
Nomenclature
Greek
References
13 Scale-Up
13.1 Introduction
13.2 Similarity and Scale-Up Concepts
13.3 Testing Methods
13.4 Observation and Measurement
13.5 Scale-Up Methods
13.6 Summary
Nomenclature
Greek
References
14 Equipment Qualification, Process and Cleaning Validation
14.1 Introduction
14.2 Blending Equipment Commissioning and Qualification
14.3 Blending and Mixing Validation
14.4 Blending Cleaning Validation
14.5 Conclusion
14.6 Acknowledgements
References
Part IV: Optimization and Control
15 Process Analytical Technology for Blending
15.1 Introduction
15.2 Chemometrics and Data Management
15.3 Near-Infrared Spectroscopy (NIRS)
15.4 Raman Spectroscopy (RS)
15.5 Image Analysis
15.6 LIF Spectroscopy
15.7 Effusivity
15.8 Other Potential Sensor Technologies
15.9 Comments on PAT in Liquid Formulation Mixing
References
16 Imaging Fluid Mixing
16.1 Introduction
16.2 Point Measurement Techniques
16.3 Photographic Imaging
16.4 Digital Particle Image Velocimetry
16.5 Magnetic Resonance Imaging
16.6 Positron Emission Particle Tracking Imaging
16.7 Electrical Process Tomography
References
17 Discrete Element Method (DEM) Simulation of Powder Mixing Process
17.1 Introduction to DEM and its Application in Pharmaceutical Powder Processing
17.2 DEM Simulation of Powder Mixing
17.3 Validation and Comparison with the Experiments
17.4 Concluding Remarks
References
Index
End User License Agreement
Chapter 01
Table 1.1 Definitions of mixing indices from the literature for use with particulate systems
Chapter 03
Table 3.1 Advanced approaches to track particles and visualize mixing and segregation of granular material
Chapter 04
Table 4.1 Description of 2 kg lot mass prepared before mass reductions to get either 100 or 125 g in the final sample, depending on the nature of the method or device [9]
Table 4.2 Requirements for dosage units obtained from stratified sampling locations. All results are weight corrected
Chapter 08
Table 8.1 Summary of granule attributes
Chapter 09
Table 9.1 Volumetric drop size distributions calculated according to the algorithm in equations 9.5–9.8
Table 9.2 Different definitions of mean drop size
Chapter 10
Table 10.1 An overview of equipment used in drug substance processing across a range of scales
Table 10.2 Common solid-liquid mixing duties and their scale-up rules (the scale-up rules are explained in more detail in subsequent sections)
Table 10.3 Typical solid liquid operations and their relevant duties
Table 10.4 Illustration of power requirement for different suspension criteria and settling velocities (adapted from Oldshue, 1983)
Table 10.5 Definition of Kolmogorov scales and typical values in turbulent water
Table 10.6 Turbulent forces on particles in water
Table 10.7 Values of the Zwietering constant S for different impellers and mixer configurations
Chapter 11
Table 11.1 Bulk densities of some powders
Chapter 12
Table 12.1 Metal alloy compositions (percentages)
Table 12.2 Surface finishes before and after electropolishing
Table 12.3 Standard motor sizes (metric and horsepower)
Table 12.4 Number of static mixer elements
Chapter 13
Table 13.1 Scale-exponents
Table 13.2 Geometric similarity scale-up example
Table 13.3 Non-geometric scale-up example – single impeller steps
Table 13.4 Non-geometric scale-up example – dual impeller steps
Table 13.5 Non-geometric scale-up example – alternate impeller design
Chapter 15
Table 15.1 PAT realistic opportunities in pharmaceutical production “unit operations”
Table 15.2 Comparative study of NIR blend analysis. Reprinted with permission from EPR, Real-Time NIR Monitoring of Pharmaceutical Blending Process with Multivariate Quantitative Models by N. Abatzoglou et al., 5, 57–67. Copyright (2005) Russell Publishing Co.
Chapter 17
Table 17.1 The modelling conditions for the sensitivity analysis on size using DEM simulation (Hassanpour et al., 2011)
Chapter 01
Figure 1.1 Idealized mixtures of 50% white and 50% black particles (a) non-random perfect mixture, (b) number of white particles in each 4 × 4 sample of the non-random mixture (c) random mixture and (d) number of white particles in each 4 × 4 sample of the random mixture
Figure 1.2 The effect of decreasing the scale of scrutiny on the perceived quality of the mixture
Figure 1.3 (a) a coarse-grained mixture and (b) a fine-grained mixture
Figure 1.4 The effects of changing scale and intensity of segregation on the quality of the mixture
Figure 1.5 An illustration of the calculation of the autocorrelation function for a mixture
Figure 1.6 The autocorrelation function for a mixture showing the definition of the length scale of segregation
Figure 1.7 The effect of the scale of scrutiny on the intensity and length scale of segregation for a fully random mixture (lengths scales are multiples of the particle size)
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
