89,99 €
Understanding transient phenomena in electric power systems and the harmful impact of resulting disturbances is an important aspect of power system operation and resilience. Bridging the gap from theory to practice, this guide introduces the fundamentals of transient phenomena affecting electric power systems using the numerical analysis tools, Alternative Transients Program- Electromagnetic Transients Program (ATP-EMTP) and ATP-DRAW. This technology is widely-applied to recognize and solve transient problems in power networks and components giving readers a highly practical and relevant perspective and the skills to analyse new transient phenomena encountered in the field.
Key features:
Written by experts with deep experience in research, teaching and industry, this text defines transient phenomena in an electric power system and introduces a professional transient analysis tool with real examples to novice engineers in the electric power system industry. It also offers instruction for graduates studying all aspects of power systems.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 242
Veröffentlichungsjahr: 2016
Cover
Title Page
Preface
Part I: Standard Course-Fundamentals and Typical Phenomena
1 Fundamentals of EMTP
1.1 Function and Composition of EMTP
1.2 Features of the Calculation Method
References
2 Modeling of System Components
2.1 Overhead Transmission Lines and Underground Cables
2.2 Transformer
3 Transient Currents in Power Systems
3.1 Short-Circuit Currents
3.2 Transformer Inrush Magnetizing Current
3.3 Transient Inrush Currents in Capacitive Circuits
Appendix 3.A: Example of ATPDraw Sheets—Data3-02.acp
Reference
4 Transient at Current Breaking
4.1 Short-Circuit Current Breakings
4.2 Capacitive Current Switching
4.3 Inductive Current Switching
4.4 TRV with Parallel Capacitance in SLF Breaking
Appendix 4.A: Current Injection to Various Circuit Elements
Appendix 4.B: TRV Calculation, Including ITRV—Current Injection is Applied for TRV Calculation
Appendix 4.C: 550 kV Line Normal Breaking
Appendix 4.D: 300 kV, 150 MVA Shunt Reactor Current Breaking—Current Chopping—Reignition—HF Current Interruption
References
5 Black Box Arc Modeling
5.1 Mayr Arc Model
5.2 Cassie Arc Model
Appendix 5.A: Mayr Arc Model Calculating SLF Breaking, 300 kV, 50 kA, L90 Condition
Appendix 5.B: Zero Skipping Current Breaking Near Generator—Fault Current Lasting
Appendix 5.C: Zero Skipping Current Breaking Near Generator—Dynamic Arc Introduced, Still Nonbreaking
6 Typical Power Electronics Circuits in Power Systems
6.1 General
6.2 HVDC Converter/Inverter Circuits
6.3 Static Var Compensator/Thyristor-Controlled Inductor
6.4 PWM Self-Communicated Type Inverter Applying the Triangular Carrier Wave Shape Principle—Applied to SVG (Static Var Generator)
Appendix 6.A: Example of ATPDraw Picture
Reference
Part II: Advanced Course-Special Phenomena and Various Applications
7 Special Switching
7.1 Transformer-Limited Short-Circuit Current Breaking
7.2 Transformer Winding Response to Very Fast Transient Voltage
7.3 Transformer Magnetizing Current under Geomagnetic Storm Conditions
7.4 Four-Armed Shunt Reactor for Suppressing Secondary Arc in Single-Pole Rapid Reclosing
7.5 Switching Four-Armed Shunt Reactor Compensated Transmission Line
References
8 Synchronous Machine Dynamics
8.1 Synchronous Machine Modeling and Machine Parameters
8.2 Some Basic Examples
8.3 Transient Stability Analysis Applying the Synchronous Machine Model
Appendix 8.A: Short-Circuit Phenomena Observation in d-q Domain Coordinate
Appendix 8.B: Starting as an Induction Motor
Appendix 8.C: Modeling by the No. 19 Universal Machine
Appendix 8.D: Example of ATPDraw Picture File: Draw8-111.acp (Figure D8.1).
References
9 Induction Machine, Doubly Fed Machine, Permanent Magnet Machine
9.1 Induction Machine (Cage Rotor Type)
9.2 Doubly Fed Machine
9.3 Permanent Magnet Machine
Appendix 9.A: Appendix Doubly Fed Machine Vector Diagrams
Appendix 9.B: Appendix Example of ATPDraw Picture
10 Machine Drive Applications
10.1 Small-Scale System Composed of a Synchronous Generator and Induction Motor
10.2 Cycloconverter
10.3 Cycloconverter-Driven Synchronous Machine
10.4 Flywheel Generator: Doubly Fed Machine Application for Transient Stability Enhancement
Appendix 10.A: Appendix Example of ATPDraw Picture
Reference
Index
End User License Agreement
Chapter 01
Table 1.1 Main circuit model.
Table 1.2 Control model.
Table 1.3 Support routine.
Chapter 02
Table 2.1 Inductance of single conductor over the Earth.
Table 2.2 Example of cable data.
Table 2.3 Example input data of cable.
Chapter 04
Table 4.1 Equation of Z and V.
Chapter 08
Table 8.1 No. 58 model data coding.
Chapter 01
Figure 1.1 Inductance.
Figure 1.2 Function
f
and area Δ
S
.
Figure 1.3 Equivalent circuit of inductance.
Figure 1.4 Capacitance.
Figure 1.5 Equivalent circuit of capacitance.
Figure 1.6 Resistance circuit.
Figure 1.7 Distributed parameter line.
Figure 1.8 Equivalent circuit for distributed parameter line.
Figure 1.9 Admittance matrix with distributed parameter lines.
Figure 1.10 Reactor current interruption. (a) Circuit. (b) Current and voltages.
Figure 1.11 Reactor current interruption with capacitor modification. (a) Circuit. (b) Current and voltages.
Figure 1.12 Outline of ATPDraw.
Chapter 02
Figure 2.1 Depth of Earth return.
Figure 2.2 Electric field lines from the conductor.
Figure 2.3 Electric field in the air.
Figure 2.4 Capacitances between three-phase conductors.
Figure 2.5 Explanation of mutual capacitance
C
ik
.
Figure 2.6 Explanation of
C
0
,
C
m
at the three-phase conductor.
Figure 2.7 Explanation of
C
1
(positive sequence capacitance).
Figure 2.8 Elimination for ground wire.
Figure 2.9 Equivalent circuit of a single-phase transmission line.
Figure 2.10 Pi equivalent circuit.
Figure 2.11 Pi equivalent circuit for three-phase lines.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!