121,99 €
Biocatalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech enzymes and whole cell biocatalysts, which add enormously to the repertoire of synthetic possibilities.
Practical Methods for Biocatalysis and Biotransformations 2 is a "how-to" guide that focuses on the practical applications of enzymes and strains of microorganisms that are readily obtained or derived from culture collections. The sources of starting materials and reagents, hints, tips and safety advice (where appropriate) are given to ensure, as far as possible, that the procedures are reproducible. Comparisons to alternative methodology are given and relevant references to the primary literature are cited. This second volume – which can be used on its own or in combination with the first volume - concentrates on new applications and new enzyme families reported since the first volume. Contents include:
Practical Methods for Biocatalysis and Biotransformations 2 is an essential collection of biocatalytic methods for chemical synthesis which will find a place on the bookshelves of synthetic organic chemists, pharmaceutical chemists, and process R&D chemists in industry and academia.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 628
Veröffentlichungsjahr: 2012
Contents
Cover
Title Page
Copyright
List of Contributors
Abbreviations
Chapter 1: Biocatalysis in the Fine Chemical and Pharmaceutical Industries
1.1 Introduction
1.2 Biotrans Outsourcing – AstraZeneca
1.3 Biotrans Trends – Lonza
1.3.1 Downstream Processing – Lonza
1.4 Biocatalysis in the Pharma Environment
1.4.1 Value Creation by Biocatalysis – Roche
1.4.2 Discovery Chemistry and Manufacturing in Pharma – Pfizer
1.4.3 Drug Metabolites and Building Blocks – Novartis
1.4.4 Biotrans Using Isolated Enzymes – Merck
1.5 Industrial Use of Hydrolases
1.5.1 β-Lactam Antibiotics Synthesis – GSK
1.5.2 Preparative Use of Phosphatases and Transglycosylases – LibraGen
1.5.3 Biocatalytic Desymmetrization and Dynamic Kinetic Resolution (DKR) Processes – AstraZeneca
1.6 Industrial Biooxidation and Reduction
1.6.1 Approaches to Chiral Secondary Alcohols – Dr Reddy's, Chirotech
1.6.2 Application of Alcohol Dehydrogenases and P450 Oxidation – Almac
1.7 Industrial Application of Transaminases – Cambrex
1.8 Biocatalyst Discovery and Improvement
1.8.1 Directed Evolution Technologies – Codexis
1.8.2 Discovering Novel Enzymes from Untapped Biodiversity – LibraGen
1.9 From Pathway Engineering to Synthetic Biology
1.9.1 Pathway Engineering in Yeast – Sanofi
1.9.2 Application of Synthetic Biology – Ingenza
1.10 Prioritization of Future Biocatalysis and Synthetic Biology Needs
1.11 Concluding Remarks
Acknowledgements
References
Chapter 2: Reductive Amination
2.1 ω-Transaminases – Useful Biocatalysts for Chiral Amine Synthesis
2.1.1 Chiral Amine Synthesis
Acknowledgements
References
2.2 Preparative Scale Production of a Bulky–Bulky Chiral Amine Using an Engineered Transaminase
2.2.1 Kilogram Scale Procedure
2.2.2 Conclusions
References
2.3 Synthesis of Optically Pure Amines Employing ω-Transaminases
2.3.1 Procedure 1: Kinetic Resolution
2.3.2 Procedure 2: Asymmetric Reductive Amination Employing System 1
2.3.3 Procedure 3: Asymmetric Reductive Amination Employing System 2
2.3.4 Conclusion
References
2.4 A Fast, Sensitive Assay and Scale-Up of ω-Transaminase Catalysed Reactions
2.4.1 Procedure 1: A Fast and Sensitive Assay for Measuring the Activity and Enantioselectivity of Transaminases
2.4.2 Procedure 2: Scale Up of a TA-Catalysed Preparation of (R)-α-Methylbenzylamine
2.4.3 Analytical
2.4.4 Conclusion
References
2.5 Asymmetric Synthesis of l-3-Hydroxyadamantylglycine Using Branched Chain Aminotransferase
2.5.1 Procedure: Preparation of l-3-Hydroxyadamantylglycine(2-(3-Hydroxy-1-Adamantyl)-(2S)-Amino Ethanoic Acid) (L-HAG)
2.5.2 Conclusion
References
2.6 Asymmetric Reduction of Aryl Imines Using Candida parapsilosis ATCC 7330
2.6.1 Procedure 1: Asymmetric Reduction of (E)-N-(1-Phenylethylidene)Benzenamine 1a using Whole Cells of Candidaparapsilosis ATCC 7330
2.6.2 Spectral Data for Compounds 2b, 5b and 6b
2.6.3 Conclusion
References
Chapter 3: Enoate Reductases for Reduction of Electron Deficient Alkenes
3.1 Asymmetric Bioreduction of Activated Alkenes Using Ene-Reductases from the Old Yellow Enzyme Family
3.1.1 Procedure 1: Organic Solvent Effect in the Asymmetric Synthesis of the Olfactory Compounds Lysmeral™ and Helional™7
3.1.2 Procedure 2: Protecting Group Effect in the Asymmetric Synthesis of the Chiral Pharmaceutical Building Block ‘Roche Ester’10
3.1.3 Procedure 3: Cofactor Regeneration System Effect in the Asymmetric Synthesis of (6R)-Levodione, a Precursor of Actinol8,13
3.1.4 Procedure 4: Substrate Structure/Stereochemistry and Enzyme Effects in the Asymmetric Synthesis of Dicarboxylic Acid Esters9
References
3.2 Efficient Baker's Yeast Mediated Reduction with Substrate Feeding Product Removal (SFPR) Technology: Synthesis of (S)-2-Alkoxy-3-Aryl-1-Propanols
3.2.1 Baker's Yeast Mediated Synthesis of (S)-2-Alkoxy-3-(4-Methoxyphenyl)-1-Propanols
3.2.2 Conclusion
References and Notes
3.3 Asymmetric Reduction of (4S)-(+)-Carvone Catalyzed by Enoate Reductases (ERs) Expressed by Non-Conventional Yeast (NCY) Whole Cells
3.3.1 Materials and Equipment
3.3.2 Procedure
References and Notes
3.4 Preparation of Enantiomerically Pure Citronellal Enantiomers Using Alkene Reductases
3.4.1 Materials and Equipment
3.4.2 Procedure
3.4.3 Analytical Methods
3.4.4 Conclusion
References and Notes
3.5 Highly Enantiomeric Hydrogenation of C–C Double Bond of Methylated N-Phenyl and N-Phenylalkylmaleimides by Aspergillus fumigatus
3.5.1 Biocatalytic Synthesis of Enantiomeric Pure 2-Methyl- and 2,3-Dimethyl-N-Phenyl and N-Phenylalkyl Succinimides
3.5.2 Product Analysis
3.5.3 Conclusion
Chapter 4: Industrial Carbonyl Reduction
4.1 Bioreduction Using Immobilized Carbonyl Reductase Technology
4.1.1 Materials and Equipment
4.1.2 Procedure
4.1.3 Conclusion
References
4.2 Preparative Ketoreductase-Catalyzed Kinetic Resolution of a Racemic Aldehyde
4.2.1 2 L Scale Procedure
4.2.2 Conclusions
References
4.3 Enzymatic Reduction of 2,6-dichloro-3-fluoro-acetophenone to Produce (S)-1-(2,6-dichloro-3-fluorophenyl)ethanol
4.3.1 Procedure: Preparation of (1s)-1-(2,6-dichloro-3-fluorophenyl)ethanol (2)
4.3.2 Conclusion
References and Notes
4.4 Preparative Scale Production of Poorly Soluble Chiral Alcohol Intermediate for Montelukast
4.4.1 1-L Scale Procedure
4.4.2 Conclusions
References
Chapter 5: Regio- and Stereoselective Hydroxylation
5.1 Engineering of an Amycolatopsis orientalis P450 Compactin Hydroxylase into a Pravastatin Synthase by Changing the Stereospecificity of the Enzyme
5.1.1 General Materials and Strains
5.1.2 Procedure 1: Generation of an Error Prone Library of Amycolatopsis orientalis P450 Hydroxylase
5.1.3 Procedure 2: Screening of the Error Prone Library for Improved Pravastatin: epi-Pravastatin Conversion Ratio
5.1.4 Procedure 3: Construction and Screening of the Second Generation Library Consisting of Site Saturation and Shuffling Approaches
5.1.5 Conclusion
References
5.2 Recombinant Human Cytochrome P450 Enzymes Expressed in Escherichia coli as Whole Cell Biocatalysts: Preparative Synthesis of Oxidized Metabolites of an mGlu5 Receptor Antagonist
5.2.1 Procedure 1: Screening of 14 rec. h. CYP-Isoforms for Biocatalyst Selection
5.2.2 Procedure 2: Propagation of E. coli JM109 Expressing rec. h. CYP3A4 and rec. h. P450 Reductase and Preparation of a Cell Suspension (Biocatalyst Production)
5.2.3 Procedure 3: Biotransformation with E. coli JM109 Expressing rec. h. CYP3A4 plus rec. h. P450 Reductase and Metabolite Purification
5.2.4 Conclusion
References and Notes
5.3 Alpha-Keto Biooxidation Using Cunninghamella echinulata (DSM 63356)
5.3.1 Materials and Equipment
5.3.2 Procedure
5.3.3 Conclusion
References
5.4 Aromatic Hydroxylation: Preparation of 3,4-Dihydroxyphenylacetic Acid
5.4.1 Preparation of 3,4-Dihydroxyphenylacetic Acid
5.4.2 Analytical Methods
5.4.3 Conclusion
Reference and Note
5.5 Regioselective Aromatic Hydroxylation of Quinaldine Using Living Pseudomonas putida Cells Containing Quinaldine 4-Oxidase
5.5.1 Biocatalytic Hydroxylation of Quinaldine by Quinaldine 4-Oxidase
5.5.2 Analytical Methods
5.5.3 Product Isolation
5.5.4 Conclusion
References
5.6 Regioselective Preparation of 5-Hydroxypropranolol with a Fungal Peroxygenase
5.6.1 Materials and Equipment
5.6.2 Procedure
5.6.3 Conclusion
References
5.7 Microbial Conversion of β-Myrcene to Geraniol by a Strain of Rhodococcus
5.7.1 Procedure 1: Growth of the Bacterium Rhodococcus erythropolis NCIMB 14574 on β-Myrcene
5.7.2 Procedure 2: Biotransformation of β-Myrcene to Geraniol by Rhodococcus erythropolis NCIMB 14574
5.7.3 Analysis
5.7.4 Conclusion
References and Notes
Chapter 6: Oxidation of Alcohols
6.1 Preparative Method for the Enzymatic Synthesis of 5-Ketogluconic Acid and its Isolation
6.1.1 Procedure for the Preparation of 5-KGA
6.1.2 Conclusion
References
6.2 Selective Enzymatic Oxidation of Atropisomeric Diaryl Ethers by Oxidation with Oxygen and Catalytic Galactose Oxidase M3–5
6.2.1 Procedure: Enzymatic Desymmetrization of an Atropisomeric Diaryl Ether
6.2.2 Conclusion
References
6.3 Kinetic Resolution of Chiral Secondary Alcohols by Oxidation with Oxygen and Catalytic Galactose Oxidase M3–5
6.3.1 Procedure 1: Preparation of Galactose Oxidase (GOase) and Purification
6.3.2 Procedure 2: Enzymatic Kinetic Resolution of Chiral Secondary Alcohols1
6.3.3 Conclusion
Reference
6.4 ADH Catalyzed Oxidation of Sec-Alcohols Using Molecular Oxygen
6.4.1 Materials and Equipment
6.4.2 Procedure
6.4.3 Conclusion
References
6.5 Irreversible Non-Enantioselective Oxidation of Secondary Alcohols Using Sphingobium ADH and Chloroacetone as Oxidant
6.5.1 Materials and Equipment
6.5.2 Procedure
6.5.3 Conclusion
References
6.6 Chemoselective Oxidation of Primary Alcohols to Aldehydes
6.6.1 Materials and Equipment
6.6.2 Procedure
6.6.3 Analytics
6.6.4 Conclusion
References
Chapter 7: Selective Oxidation
7.1 Enantioselective Biocatalytic Oxidative Desymmetrization of Substituted Pyrrolidines
7.1.1 Procedure 1: Preparation of the Biocatalyst
7.1.2 Procedure 2: Desymmetrization of Pyrrolidines
7.1.3 Procedure 3: Stereoselective Synthesis of the Amino Acid
7.1.4 Conclusion
References
7.2 Large Scale Baeyer–Villiger Monooxygenase-Catalyzed Conversion of (R,S)-3-phenylbutan-2-one
7.2.1 Procedure 1: Recombinant Expression of the Baeyer–Villiger Monooxygenase from Pseudomonas putida JD1 in Escherichia coli
7.2.2 Procedure 2: Biocatalytic Conversion of (R,S)-3-Phenylbutan-2-one
7.2.3 Conclusion
References
7.3 Synthesis of Optically Active 3-Alkyl-3-,4-dihydroioscoumarins by Dynamic Kinetic Resolutions Catalyzed by a Baeyer–Villiger Monooxygenase
7.3.1 Procedure: Dynamic Kinetic Resolution using M446G PAMO Cell Free Extract
7.3.2 Conclusion
References
7.4 Oxidative Cleavage of the B-Ring of (+)-Catechin
7.4.1 Procedure: Biocatalytic Conversion of (+)-Catechin (1) to Novel B-Ring Fission Lactones (2, 3)
7.4.2 Conclusion
References
7.5 18O-Isotopic Labeling in the Meta-Dioxygenase Cleavage of (+)-Catechin B-Ring
7.5.1 Proposed Pathway for the Conversion of (+)-Catechin (1) to 18O-Labeled, Novel B-Ring Fission Lactones (2, 3)
7.5.2 H2 18O and 18O 2 Labeling Experiments
7.5.3 Conclusion
References
7.6 Biocatalytic Cleavage of Alkenes with Oxygen and Trametes hirsuta G FCC047
7.6.1 Procedure 1: Analytical Scale
7.6.2 Procedure 2: Preparative Scale
7.6.3 Conclusion
References
Chapter 8: Industrial Hydrolases and Related Enzymes
8.1 Dynamic Kinetic Resolution of α-Halo Esters with Hydrolytic Enzymes and Sec-amine Bases
8.1.1 Materials and Equipment
8.1.2 Procedures
8.1.3 Analytical Methods used for α-Chloroesters and Acids
8.1.4 Conclusion
Reference
8.2 Kinetic Resolution of an Amino Ester Using Supported Mucor miehei Lipase (Lipozyme® RM IM)
8.2.1 Procedure 1: Resolution of Ester III
8.2.2 Procedure 2: Resolution of Ester I
8.2.3 Procedure 3: Recycling of (S)-Acid
8.2.4 Conclusion
Reference
8.3 Large Scale Synthesis of (S)-Allysine Ethylene Acetal via Amino Acylase Resolution
8.3.1 Materials
8.3.2 Procedure
8.3.3 Conclusion
References and Notes
8.4 Pilot-Scale Synthesis of (1R,2S,4S)-7-Oxabicyclo[2.2.1]heptan-2-exo-carboxylic Acid
8.4.1 Experimental
8.4.2 Conclusion
References
8.5 A Selective Lipase-Catalyzed Mono-Acetylation of a Diol Suitable for a Telescoped Synthetic Process
8.5.1 Procedure
8.5.2 Conclusion
References
8.6 A Protease-Mediated Hydrolytic Kinetic Resolution of an Atropisomeric Ester Operating Within an Unusually Narrow pH Window
8.6.1 Procedure
8.6.2 Conclusion
Reference
8.7 Asymmetric Synthesis of Quaternary Amino Acids from Simple Bis Nitriles Using a Dual Nitrile Hydratase/Amidase Biocatalyzed Reaction
8.7.1 Materials and Equipment
8.7.2 Procedures
8.7.3 Conclusion
References
8.8 Development of an Improved Immobilized CAL-B for the Enzymatic Resolution of a Key Intermediate to Odanacatib
8.8.1 Procedure 1: CAL-B Immobilization Procedure
8.8.2 Procedure 2: Batch Reactions
8.8.3 Procedure 3: Continuous Plug Flow Reactions
8.8.4 Conclusion
References
Chapter 9: Transferases for Alkylation, Glycosylation and Phosphorylation
9.1 Industrial Production of Caffeic Acid-α-D-O-Glucoside
9.1.1 Procedure 1: Preparation of the Glucosyltransferase Enzyme
9.1.2 Procedure 2: Preparation of Caffeic Acid-α-d-O-Glucoside
9.1.3 Specification of the Product
9.1.4 Analytical Controls
9.1.5 Conclusion
9.2 Enzymatic Synthesis of 5-Methyluridine by Transglycosylation of Guanosine and Thymine
9.2.1 Procedure 1: Production of Biocatalysts
9.2.2 Procedure 2: Biocatalytic Production of 5-Methyluridine (5-MU)9–11
9.2.3 Procedure 3: Isolation and Recovery of 5-MU
9.2.4 Conclusion
References
9.3 Preparation and Use of Sucrose Phosphorylase as Cross-Linked Enzyme Aggregate (CLEA)
9.3.1 Procedure 1: Production of Cellular Biomass
9.3.2 Procedure 2: Cell Lysis and Enzyme Purification
9.3.3 Procedure 3: Production of CLEAs
9.3.4 Procedure 4: Production of α-D-Glucose-1-phosphate
9.3.5 Analytical Data
9.3.6 Conclusion
References
9.4 Enzymatic Synthesis of Phosphorylated Carbohydrates and Alcohols
9.4.1 Procedure: Preparative Synthesis of G6P
9.4.2 Conclusion
References
9.5 Biocatalyzed Synthesis of Chiral O-Phosphorylated Derivative of 2-Hydroxy-2-phenylethanephosphonate
9.5.1 Biotransformation of Diethyl 2-oxo-2-phenylethanephosphonate
9.5.2 Conclusion
References and Notes
9.6 High Activity β-Galactosidase Preparation for Diastereoselective Synthesis of (R)-(1-Phenylethyl)-β-D-Galactopyranoside by Reverse Hydrolysis
9.6.1 Introduction
9.6.2 Conclusion
Acknowledgements
References
9.7 Stereospecific Synthesis of Aszonalenins by Using Two Recombinant Prenyltransferases
9.7.1 Procedure 1: Preparation of the Prenyltransferases CdpNPT and AnaPT
9.7.2 Procedure 2: Preparative Synthesis and Structural Elucidation of Aszonalenins
9.7.3 Conclusion
References
9.8 Enzymatic Friedel–Crafts Alkylation Catalyzed by S-Adenosyl-L-methionine Dependent Methyl Transferase
9.8.1 Procedure 1: Crotyl-S-adenosyl-L-homocysteine triflate
9.8.2 Procedure 2: N-(8-Crotyl-4,7-dihydroxy-2-oxo-2H-chromen-3-yl)-1H-pyrrole-2-carboxamide
9.8.3 Conclusion
References
Chapter 10: C–C Bond Formation and Decarboxylation
10.1 Enzymatic, Stereoselective Synthesis of (S)-Norcoclaurine
10.1.1 Procedure 1: Synthesis of 4-Hydroxyphenylacetaldehyde
10.1.2 Procedure 2: Synthesis of (S)-Norcoclaurine
10.1.3 Conclusion
References
10.2 Preparation of Non-Natural Tyrosine Derivatives from Pyruvate and Phenol Derivatives
10.2.1 Procedure for the Preparation of L-3-Methoxytyrosine
10.2.3 Conclusion
References
10.3 Enzymatic α-Decarboxylation of L-Glutamic Acid in the Production of Biobased Chemicals
10.3.1 Procedure 1: GAD Immobilization
10.3.2 Procedure 2: Product Quantification by HPLC
10.3.3 Procedure 3: GAD Activity Assay
10.3.4 Procedure 4: GAD Stability Assay
10.3.5 Conclusion
References
10.4 Asymmetric Decarboxylation of Arylmalonates and Racemization of Profens by Arylmalonate Decarboxylase and its Variants
10.4.1 Procedure 1: Asymmetric Decarboxylation of Arylmalonate
10.4.2 Procedure 2: Enzymatic Racemization of Profens
10.4.3 Conclusion
References
10.5 Improved Enzymatic Preparation of 1-Deoxy-d-xylulose 5-Phosphate
10.5.1 Synthesis of DXP
10.5.2 Purification of DXP
10.5.3 Conclusion
References
10.6 On the Use of 2-Methyltetrahydrofuran (2-MeTHF) as Bio-Based (Co-) Solvent in Biotransformations
10.6.1 The Quest for Efficient and Bio-Based (Co-) Solvents
10.6.2 Case Study 1: Alcohol Dehydrogenase Catalyzed Enantioselective Ketone Reduction using 2-MeTHF as (Co-) Solvent
10.6.3 Case Study 2: Benzaldehyde Lyase (BAL) Catalyzed Enantioselective C–C Bond Formation using 2-MeTHF as (Co-) Solvent
10.6.4 Concluding Remarks
Acknowledgements
References
10.7 The Lipase-Catalyzed Asymmetric Michael Addition of Thienyl Nitroolefin to Acetylacetone
10.7.1 Procedure 1: The Lipozyme TLIM Catalyzed Michael Addition of Thienyl Nitroolefin to Acetylacetone
10.7.2 Procedure 2: Regeneration and Reuse of Lipozyme TLIM
10.7.3 Conclusion
References
Chapter 11: Halogenation/Dehalogenation/Heteroatom Oxidation
11.1 Preparation of Halogenated Molecules by a Fungal Flavin-Dependent Halogenase Heterologously Expressed in Escherichia coli
11.1.1 Whole-Cell Biocatalytic Halogenation of Dihydroresorcylide
11.1.2 Conclusion
References and Notes
11.2 Preparation of Optically Pure Haloalkanes and Alcohols by Kinetic Resolution Using Haloalkane Dehalogenases
11.2.1 Procedure 1: Kinetic Resolution of α-Bromoesters and β-Bromoalkanes
11.2.2 Procedure 2: Gram-Scale Synthesis of (S)-2-Bromopentane
11.2.3 Conclusions
Acknowledgements
References
11.3 Preparation of Enantiopure Sulfoxides by Enantioselective Oxidation with Whole Cells of Rhodococcus sp. ECU0066
11.3.1 Procedure: Preparation of (S)-Phenyl Methyl Sulfoxide 1a
11.3.2 Conclusion
References and Notes
11.4 Kinetic Resolution of an Insecticidal Dithiophosphate by Chloroperoxidase Catalyzed Oxidation of the Thiophosphoryl Group
11.4.1 Procedure: Kinetic Resolution of Racemic Dithiophosphate 1 by Oxidation with CPO/H2O2 System
11.4.2 Conclusion
References
Chapter 12: Tandem and Sequential Multi-Enzymatic Syntheses
12.1 Production of Isorhamnetin 3-O-Glucoside in Escherichia coli Using Engineered Glycosyltransferase
12.1.1 Materials and Equipment
12.1.2 Procedure
12.1.3 Analytical Methods
12.1.4 Conclusion
References and Notes
12.2 Multienzymatic Preparation of (–)-3-(Oxiran-2-yl)Benzoic Acid
12.2.1 Materials and Equipment
12.2.2 Procedure
12.2.3 Work Up Procedure
12.2.4 Analytical Methods
12.2.5 Conclusion
References and Notes
12.3 Enzymatic Synthesis of Carbohydrates from Dihydroxyacetone and Aldehydes by a One Pot Enzyme Cascade Reaction
12.3.1 Procedure: Synthesis of 5,6-Dideoxy-D-threo-2-hexulose (3S,4R)
12.3.2 Conclusion
References
12.4 Aldolase Based Multi-Enzyme System for Carbon–Carbon Bond Formation
12.4.1 Procedure 1: One Pot/One Step
12.4.2 Procedure 2: One Pot/Two Steps
12.4.3 Analytical Data for the Products from Aldehyde 13
12.4.4 Conclusion
Acknowledgements
References
12.5 Tandem Biocatalytic Process for the Kinetic Resolution of β-Phenylalanine and its Analogs
12.5.1 Procedure 1: Expression and Purification of a Mutated Phenylalanine Aminomutase (PAM-Q319M) and Phenylalanine Ammonia Lyase (PAL)
12.5.2 Procedure 2: Kinetic Resolution of Racemic β-Phenylalanine
12.5.3 Conclusion
References
12.6 A Chemoenzymatic Synthesis of a Deoxy Sugar Ester of N-Boc-Protected L-Tyrosine
12.6.1 Procedure 1: The O-Alkylation of Carboxylic Acid and Lipase-Catalyzed Deacetylation (Performed as a “One-Pot Synthesis”)
12.6.2 Procedure 2: Lipase-Catalyzed Acetylation of Hemiacetal 3
12.6.3 Procedure 3: Lipase-Catalyzed Deacetylation of Compound 4
12.6.4 Conclusion
References
12.7 Electrochemical Systems for the Recovery of Succinic Acid from Fermentations
12.7.1 Materials and Equipment (Fermentation)
12.7.2 Analytical Method
12.7.3 Culture of Actinobacillus succinogenes
12.7.4 Fermentation Media
12.7.5 Fermentation
12.7.6 Work Up Electrodialysis Conditions
12.7.7 Conclusion
References and Notes
Appendix 1
Index
This edition first published 2012
© 2012 John Wiley & Sons, Ltd.
Registered office
John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.
The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.
Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.
Library of Congress Cataloging-in-Publication Data
Practical methods for biocatalysis and biotransformations / edited by John
Whittall, Peter W. Sutton. – 2
p. cm.
Includes bibliographical references and index.
ISBN 978-1-119-99139-7 (cloth)
1. Enzymes–Biotechnology. 2. Biotransformation (Metabolism) 3. Organic
compounds–Synthesis. I. Whittall, John. II. Sutton, Peter (Peter W.)
TP248.65.E59P73 2012
572–dc23
2012005816
List of Contributors
Joseph P. Adams GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
Joong-Hoon Ahn Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 1 Hwayang-Dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
Ian Archer Ingenza Limited, Joseph Black Building, King's Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK
Daniel Auriol LIBRAGEN, 3 Rue des Satellites, 31400 Toulouse, France
Manuela Avi Lonza AG, CH-3930 Visp, Schweiz, Switzerland
Kevin R. Bailey Manchester Interdisciplinary Biocentre (MIB), University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
Neil Barnwell AstraZeneca Global Process R&D, Bakewell Road, Loughborough, Leicestershire, UK
Marco van den Berg DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613AX Delft, The Netherlands
Moira L. Bode CSIR Biosciences, PO Box 365, Pretoria 0001, South Africa
Alessandra Bonamore Dipartimento di Scienze Biochimiche, Sapienza University, Rome, Italy; and MOLIROM s.r.l, Rome, Italy
Uwe T. Bornscheuer Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
Dean Brady CSIR Biosciences, PO Box 365, Pretoria 0001, South Africa
Eva Branda Department of Applied Biology and Industrial Yeasts Collection DBVPG, Borgo XX Giugno 74, University of Perugia, 06121 Perugia, Italy
Christoph Brandenbusch Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
Cecilia Branneby Cambrex Karlskoga AB, Sweden
Gary Breen GlaxoSmithKline, 1 Pioneer Sector 1, Singapore 628413
Elisabetta Brenna Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
Maria S. Brown Biocatalysis Center of Emphasis, Chemical R&D, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Pfizer, Groton, Connecticut, USA
Magorzata Brzeziska-Rodak Wrocaw University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wybrzee Wyspiaskiego 27, 50-370 Wrocaw, Poland
Bruno Bühler Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
Colin M. Burns Pfizer Worldwide Research and Development, Department of Chemical Research and Development, Ramsgate Road, Kent, CT13 9NJ, UK
Michael P. Burns Biocatalysis Center of Emphasis, Chemical R&D, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Pfizer, Groton, Connecticut, USA
Pietro Buzzini Department of Applied Biology and Industrial Yeasts Collection DBVPG, Borgo XX Giugno 74, University of Perugia, 06121 Perugia, Italy
Jian-Feng Cai School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
John Carey Reckitt Benckiser Pharmaceuticals, Dansom Lane, Hull, HU8 7DS, UK
Elisa Caselli Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy
Jim Cawley Biocatalysis Center of Emphasis-CRD, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Pfizer, Groton, Connecticut, USA
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
