Practical Methods for Biocatalysis and Biotransformations 2 -  - E-Book

Practical Methods for Biocatalysis and Biotransformations 2 E-Book

0,0
121,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Biocatalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech enzymes and whole cell biocatalysts, which add enormously to the repertoire of synthetic possibilities.

Practical Methods for Biocatalysis and Biotransformations 2 is a "how-to" guide that focuses on the practical applications of enzymes and strains of microorganisms that are readily obtained or derived from culture collections. The sources of starting materials and reagents, hints, tips and safety advice (where appropriate) are given to ensure, as far as possible, that the procedures are reproducible. Comparisons to alternative methodology are given and relevant references to the primary literature are cited. This second volume – which can be used on its own or in combination with the first volume - concentrates on new applications and new enzyme families reported since the first volume. Contents include:

  • introduction to recent developments and future needs in biocatalysts and synthetic biology in industry
  • reductive amination
  • enoate reductases for reduction of electron deficient alkenes
  • industrial carbonyl reduction
  • regio- and stereo- selective hydroxylation
  • oxidation of alcohols
  • selective oxidation
  • industrial hydrolases and related enzymes
  • transferases for alkylation, glycosylation and phosphorylation
  • C-C bond formation and decarboxylation
  • halogenation/dehalogenation/heteroatom oxidation
  • tandem and sequential multi-enzymatic syntheses

Practical Methods for Biocatalysis and Biotransformations 2 is an essential collection of biocatalytic methods for chemical synthesis which will find a place on the bookshelves of synthetic organic chemists, pharmaceutical chemists, and process R&D chemists in industry and academia.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 628

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Title Page

Copyright

List of Contributors

Abbreviations

Chapter 1: Biocatalysis in the Fine Chemical and Pharmaceutical Industries

1.1 Introduction

1.2 Biotrans Outsourcing – AstraZeneca

1.3 Biotrans Trends – Lonza

1.3.1 Downstream Processing – Lonza

1.4 Biocatalysis in the Pharma Environment

1.4.1 Value Creation by Biocatalysis – Roche

1.4.2 Discovery Chemistry and Manufacturing in Pharma – Pfizer

1.4.3 Drug Metabolites and Building Blocks – Novartis

1.4.4 Biotrans Using Isolated Enzymes – Merck

1.5 Industrial Use of Hydrolases

1.5.1 β-Lactam Antibiotics Synthesis – GSK

1.5.2 Preparative Use of Phosphatases and Transglycosylases – LibraGen

1.5.3 Biocatalytic Desymmetrization and Dynamic Kinetic Resolution (DKR) Processes – AstraZeneca

1.6 Industrial Biooxidation and Reduction

1.6.1 Approaches to Chiral Secondary Alcohols – Dr Reddy's, Chirotech

1.6.2 Application of Alcohol Dehydrogenases and P450 Oxidation – Almac

1.7 Industrial Application of Transaminases – Cambrex

1.8 Biocatalyst Discovery and Improvement

1.8.1 Directed Evolution Technologies – Codexis

1.8.2 Discovering Novel Enzymes from Untapped Biodiversity – LibraGen

1.9 From Pathway Engineering to Synthetic Biology

1.9.1 Pathway Engineering in Yeast – Sanofi

1.9.2 Application of Synthetic Biology – Ingenza

1.10 Prioritization of Future Biocatalysis and Synthetic Biology Needs

1.11 Concluding Remarks

Acknowledgements

References

Chapter 2: Reductive Amination

2.1 ω-Transaminases – Useful Biocatalysts for Chiral Amine Synthesis

2.1.1 Chiral Amine Synthesis

Acknowledgements

References

2.2 Preparative Scale Production of a Bulky–Bulky Chiral Amine Using an Engineered Transaminase

2.2.1 Kilogram Scale Procedure

2.2.2 Conclusions

References

2.3 Synthesis of Optically Pure Amines Employing ω-Transaminases

2.3.1 Procedure 1: Kinetic Resolution

2.3.2 Procedure 2: Asymmetric Reductive Amination Employing System 1

2.3.3 Procedure 3: Asymmetric Reductive Amination Employing System 2

2.3.4 Conclusion

References

2.4 A Fast, Sensitive Assay and Scale-Up of ω-Transaminase Catalysed Reactions

2.4.1 Procedure 1: A Fast and Sensitive Assay for Measuring the Activity and Enantioselectivity of Transaminases

2.4.2 Procedure 2: Scale Up of a TA-Catalysed Preparation of (R)-α-Methylbenzylamine

2.4.3 Analytical

2.4.4 Conclusion

References

2.5 Asymmetric Synthesis of l-3-Hydroxyadamantylglycine Using Branched Chain Aminotransferase

2.5.1 Procedure: Preparation of l-3-Hydroxyadamantylglycine(2-(3-Hydroxy-1-Adamantyl)-(2S)-Amino Ethanoic Acid) (L-HAG)

2.5.2 Conclusion

References

2.6 Asymmetric Reduction of Aryl Imines Using Candida parapsilosis ATCC 7330

2.6.1 Procedure 1: Asymmetric Reduction of (E)-N-(1-Phenylethylidene)Benzenamine 1a using Whole Cells of Candidaparapsilosis ATCC 7330

2.6.2 Spectral Data for Compounds 2b, 5b and 6b

2.6.3 Conclusion

References

Chapter 3: Enoate Reductases for Reduction of Electron Deficient Alkenes

3.1 Asymmetric Bioreduction of Activated Alkenes Using Ene-Reductases from the Old Yellow Enzyme Family

3.1.1 Procedure 1: Organic Solvent Effect in the Asymmetric Synthesis of the Olfactory Compounds Lysmeral™ and Helional™7

3.1.2 Procedure 2: Protecting Group Effect in the Asymmetric Synthesis of the Chiral Pharmaceutical Building Block ‘Roche Ester’10

3.1.3 Procedure 3: Cofactor Regeneration System Effect in the Asymmetric Synthesis of (6R)-Levodione, a Precursor of Actinol8,13

3.1.4 Procedure 4: Substrate Structure/Stereochemistry and Enzyme Effects in the Asymmetric Synthesis of Dicarboxylic Acid Esters9

References

3.2 Efficient Baker's Yeast Mediated Reduction with Substrate Feeding Product Removal (SFPR) Technology: Synthesis of (S)-2-Alkoxy-3-Aryl-1-Propanols

3.2.1 Baker's Yeast Mediated Synthesis of (S)-2-Alkoxy-3-(4-Methoxyphenyl)-1-Propanols

3.2.2 Conclusion

References and Notes

3.3 Asymmetric Reduction of (4S)-(+)-Carvone Catalyzed by Enoate Reductases (ERs) Expressed by Non-Conventional Yeast (NCY) Whole Cells

3.3.1 Materials and Equipment

3.3.2 Procedure

References and Notes

3.4 Preparation of Enantiomerically Pure Citronellal Enantiomers Using Alkene Reductases

3.4.1 Materials and Equipment

3.4.2 Procedure

3.4.3 Analytical Methods

3.4.4 Conclusion

References and Notes

3.5 Highly Enantiomeric Hydrogenation of C–C Double Bond of Methylated N-Phenyl and N-Phenylalkylmaleimides by Aspergillus fumigatus

3.5.1 Biocatalytic Synthesis of Enantiomeric Pure 2-Methyl- and 2,3-Dimethyl-N-Phenyl and N-Phenylalkyl Succinimides

3.5.2 Product Analysis

3.5.3 Conclusion

Chapter 4: Industrial Carbonyl Reduction

4.1 Bioreduction Using Immobilized Carbonyl Reductase Technology

4.1.1 Materials and Equipment

4.1.2 Procedure

4.1.3 Conclusion

References

4.2 Preparative Ketoreductase-Catalyzed Kinetic Resolution of a Racemic Aldehyde

4.2.1 2 L Scale Procedure

4.2.2 Conclusions

References

4.3 Enzymatic Reduction of 2,6-dichloro-3-fluoro-acetophenone to Produce (S)-1-(2,6-dichloro-3-fluorophenyl)ethanol

4.3.1 Procedure: Preparation of (1s)-1-(2,6-dichloro-3-fluorophenyl)ethanol (2)

4.3.2 Conclusion

References and Notes

4.4 Preparative Scale Production of Poorly Soluble Chiral Alcohol Intermediate for Montelukast

4.4.1 1-L Scale Procedure

4.4.2 Conclusions

References

Chapter 5: Regio- and Stereoselective Hydroxylation

5.1 Engineering of an Amycolatopsis orientalis P450 Compactin Hydroxylase into a Pravastatin Synthase by Changing the Stereospecificity of the Enzyme

5.1.1 General Materials and Strains

5.1.2 Procedure 1: Generation of an Error Prone Library of Amycolatopsis orientalis P450 Hydroxylase

5.1.3 Procedure 2: Screening of the Error Prone Library for Improved Pravastatin: epi-Pravastatin Conversion Ratio

5.1.4 Procedure 3: Construction and Screening of the Second Generation Library Consisting of Site Saturation and Shuffling Approaches

5.1.5 Conclusion

References

5.2 Recombinant Human Cytochrome P450 Enzymes Expressed in Escherichia coli as Whole Cell Biocatalysts: Preparative Synthesis of Oxidized Metabolites of an mGlu5 Receptor Antagonist

5.2.1 Procedure 1: Screening of 14 rec. h. CYP-Isoforms for Biocatalyst Selection

5.2.2 Procedure 2: Propagation of E. coli JM109 Expressing rec. h. CYP3A4 and rec. h. P450 Reductase and Preparation of a Cell Suspension (Biocatalyst Production)

5.2.3 Procedure 3: Biotransformation with E. coli JM109 Expressing rec. h. CYP3A4 plus rec. h. P450 Reductase and Metabolite Purification

5.2.4 Conclusion

References and Notes

5.3 Alpha-Keto Biooxidation Using Cunninghamella echinulata (DSM 63356)

5.3.1 Materials and Equipment

5.3.2 Procedure

5.3.3 Conclusion

References

5.4 Aromatic Hydroxylation: Preparation of 3,4-Dihydroxyphenylacetic Acid

5.4.1 Preparation of 3,4-Dihydroxyphenylacetic Acid

5.4.2 Analytical Methods

5.4.3 Conclusion

Reference and Note

5.5 Regioselective Aromatic Hydroxylation of Quinaldine Using Living Pseudomonas putida Cells Containing Quinaldine 4-Oxidase

5.5.1 Biocatalytic Hydroxylation of Quinaldine by Quinaldine 4-Oxidase

5.5.2 Analytical Methods

5.5.3 Product Isolation

5.5.4 Conclusion

References

5.6 Regioselective Preparation of 5-Hydroxypropranolol with a Fungal Peroxygenase

5.6.1 Materials and Equipment

5.6.2 Procedure

5.6.3 Conclusion

References

5.7 Microbial Conversion of β-Myrcene to Geraniol by a Strain of Rhodococcus

5.7.1 Procedure 1: Growth of the Bacterium Rhodococcus erythropolis NCIMB 14574 on β-Myrcene

5.7.2 Procedure 2: Biotransformation of β-Myrcene to Geraniol by Rhodococcus erythropolis NCIMB 14574

5.7.3 Analysis

5.7.4 Conclusion

References and Notes

Chapter 6: Oxidation of Alcohols

6.1 Preparative Method for the Enzymatic Synthesis of 5-Ketogluconic Acid and its Isolation

6.1.1 Procedure for the Preparation of 5-KGA

6.1.2 Conclusion

References

6.2 Selective Enzymatic Oxidation of Atropisomeric Diaryl Ethers by Oxidation with Oxygen and Catalytic Galactose Oxidase M3–5

6.2.1 Procedure: Enzymatic Desymmetrization of an Atropisomeric Diaryl Ether

6.2.2 Conclusion

References

6.3 Kinetic Resolution of Chiral Secondary Alcohols by Oxidation with Oxygen and Catalytic Galactose Oxidase M3–5

6.3.1 Procedure 1: Preparation of Galactose Oxidase (GOase) and Purification

6.3.2 Procedure 2: Enzymatic Kinetic Resolution of Chiral Secondary Alcohols1

6.3.3 Conclusion

Reference

6.4 ADH Catalyzed Oxidation of Sec-Alcohols Using Molecular Oxygen

6.4.1 Materials and Equipment

6.4.2 Procedure

6.4.3 Conclusion

References

6.5 Irreversible Non-Enantioselective Oxidation of Secondary Alcohols Using Sphingobium ADH and Chloroacetone as Oxidant

6.5.1 Materials and Equipment

6.5.2 Procedure

6.5.3 Conclusion

References

6.6 Chemoselective Oxidation of Primary Alcohols to Aldehydes

6.6.1 Materials and Equipment

6.6.2 Procedure

6.6.3 Analytics

6.6.4 Conclusion

References

Chapter 7: Selective Oxidation

7.1 Enantioselective Biocatalytic Oxidative Desymmetrization of Substituted Pyrrolidines

7.1.1 Procedure 1: Preparation of the Biocatalyst

7.1.2 Procedure 2: Desymmetrization of Pyrrolidines

7.1.3 Procedure 3: Stereoselective Synthesis of the Amino Acid

7.1.4 Conclusion

References

7.2 Large Scale Baeyer–Villiger Monooxygenase-Catalyzed Conversion of (R,S)-3-phenylbutan-2-one

7.2.1 Procedure 1: Recombinant Expression of the Baeyer–Villiger Monooxygenase from Pseudomonas putida JD1 in Escherichia coli

7.2.2 Procedure 2: Biocatalytic Conversion of (R,S)-3-Phenylbutan-2-one

7.2.3 Conclusion

References

7.3 Synthesis of Optically Active 3-Alkyl-3-,4-dihydroioscoumarins by Dynamic Kinetic Resolutions Catalyzed by a Baeyer–Villiger Monooxygenase

7.3.1 Procedure: Dynamic Kinetic Resolution using M446G PAMO Cell Free Extract

7.3.2 Conclusion

References

7.4 Oxidative Cleavage of the B-Ring of (+)-Catechin

7.4.1 Procedure: Biocatalytic Conversion of (+)-Catechin (1) to Novel B-Ring Fission Lactones (2, 3)

7.4.2 Conclusion

References

7.5 18O-Isotopic Labeling in the Meta-Dioxygenase Cleavage of (+)-Catechin B-Ring

7.5.1 Proposed Pathway for the Conversion of (+)-Catechin (1) to 18O-Labeled, Novel B-Ring Fission Lactones (2, 3)

7.5.2 H2 18O and 18O 2 Labeling Experiments

7.5.3 Conclusion

References

7.6 Biocatalytic Cleavage of Alkenes with Oxygen and Trametes hirsuta G FCC047

7.6.1 Procedure 1: Analytical Scale

7.6.2 Procedure 2: Preparative Scale

7.6.3 Conclusion

References

Chapter 8: Industrial Hydrolases and Related Enzymes

8.1 Dynamic Kinetic Resolution of α-Halo Esters with Hydrolytic Enzymes and Sec-amine Bases

8.1.1 Materials and Equipment

8.1.2 Procedures

8.1.3 Analytical Methods used for α-Chloroesters and Acids

8.1.4 Conclusion

Reference

8.2 Kinetic Resolution of an Amino Ester Using Supported Mucor miehei Lipase (Lipozyme® RM IM)

8.2.1 Procedure 1: Resolution of Ester III

8.2.2 Procedure 2: Resolution of Ester I

8.2.3 Procedure 3: Recycling of (S)-Acid

8.2.4 Conclusion

Reference

8.3 Large Scale Synthesis of (S)-Allysine Ethylene Acetal via Amino Acylase Resolution

8.3.1 Materials

8.3.2 Procedure

8.3.3 Conclusion

References and Notes

8.4 Pilot-Scale Synthesis of (1R,2S,4S)-7-Oxabicyclo[2.2.1]heptan-2-exo-carboxylic Acid

8.4.1 Experimental

8.4.2 Conclusion

References

8.5 A Selective Lipase-Catalyzed Mono-Acetylation of a Diol Suitable for a Telescoped Synthetic Process

8.5.1 Procedure

8.5.2 Conclusion

References

8.6 A Protease-Mediated Hydrolytic Kinetic Resolution of an Atropisomeric Ester Operating Within an Unusually Narrow pH Window

8.6.1 Procedure

8.6.2 Conclusion

Reference

8.7 Asymmetric Synthesis of Quaternary Amino Acids from Simple Bis Nitriles Using a Dual Nitrile Hydratase/Amidase Biocatalyzed Reaction

8.7.1 Materials and Equipment

8.7.2 Procedures

8.7.3 Conclusion

References

8.8 Development of an Improved Immobilized CAL-B for the Enzymatic Resolution of a Key Intermediate to Odanacatib

8.8.1 Procedure 1: CAL-B Immobilization Procedure

8.8.2 Procedure 2: Batch Reactions

8.8.3 Procedure 3: Continuous Plug Flow Reactions

8.8.4 Conclusion

References

Chapter 9: Transferases for Alkylation, Glycosylation and Phosphorylation

9.1 Industrial Production of Caffeic Acid-α-D-O-Glucoside

9.1.1 Procedure 1: Preparation of the Glucosyltransferase Enzyme

9.1.2 Procedure 2: Preparation of Caffeic Acid-α-d-O-Glucoside

9.1.3 Specification of the Product

9.1.4 Analytical Controls

9.1.5 Conclusion

9.2 Enzymatic Synthesis of 5-Methyluridine by Transglycosylation of Guanosine and Thymine

9.2.1 Procedure 1: Production of Biocatalysts

9.2.2 Procedure 2: Biocatalytic Production of 5-Methyluridine (5-MU)9–11

9.2.3 Procedure 3: Isolation and Recovery of 5-MU

9.2.4 Conclusion

References

9.3 Preparation and Use of Sucrose Phosphorylase as Cross-Linked Enzyme Aggregate (CLEA)

9.3.1 Procedure 1: Production of Cellular Biomass

9.3.2 Procedure 2: Cell Lysis and Enzyme Purification

9.3.3 Procedure 3: Production of CLEAs

9.3.4 Procedure 4: Production of α-D-Glucose-1-phosphate

9.3.5 Analytical Data

9.3.6 Conclusion

References

9.4 Enzymatic Synthesis of Phosphorylated Carbohydrates and Alcohols

9.4.1 Procedure: Preparative Synthesis of G6P

9.4.2 Conclusion

References

9.5 Biocatalyzed Synthesis of Chiral O-Phosphorylated Derivative of 2-Hydroxy-2-phenylethanephosphonate

9.5.1 Biotransformation of Diethyl 2-oxo-2-phenylethanephosphonate

9.5.2 Conclusion

References and Notes

9.6 High Activity β-Galactosidase Preparation for Diastereoselective Synthesis of (R)-(1-Phenylethyl)-β-D-Galactopyranoside by Reverse Hydrolysis

9.6.1 Introduction

9.6.2 Conclusion

Acknowledgements

References

9.7 Stereospecific Synthesis of Aszonalenins by Using Two Recombinant Prenyltransferases

9.7.1 Procedure 1: Preparation of the Prenyltransferases CdpNPT and AnaPT

9.7.2 Procedure 2: Preparative Synthesis and Structural Elucidation of Aszonalenins

9.7.3 Conclusion

References

9.8 Enzymatic Friedel–Crafts Alkylation Catalyzed by S-Adenosyl-L-methionine Dependent Methyl Transferase

9.8.1 Procedure 1: Crotyl-S-adenosyl-L-homocysteine triflate

9.8.2 Procedure 2: N-(8-Crotyl-4,7-dihydroxy-2-oxo-2H-chromen-3-yl)-1H-pyrrole-2-carboxamide

9.8.3 Conclusion

References

Chapter 10: C–C Bond Formation and Decarboxylation

10.1 Enzymatic, Stereoselective Synthesis of (S)-Norcoclaurine

10.1.1 Procedure 1: Synthesis of 4-Hydroxyphenylacetaldehyde

10.1.2 Procedure 2: Synthesis of (S)-Norcoclaurine

10.1.3 Conclusion

References

10.2 Preparation of Non-Natural Tyrosine Derivatives from Pyruvate and Phenol Derivatives

10.2.1 Procedure for the Preparation of L-3-Methoxytyrosine

10.2.3 Conclusion

References

10.3 Enzymatic α-Decarboxylation of L-Glutamic Acid in the Production of Biobased Chemicals

10.3.1 Procedure 1: GAD Immobilization

10.3.2 Procedure 2: Product Quantification by HPLC

10.3.3 Procedure 3: GAD Activity Assay

10.3.4 Procedure 4: GAD Stability Assay

10.3.5 Conclusion

References

10.4 Asymmetric Decarboxylation of Arylmalonates and Racemization of Profens by Arylmalonate Decarboxylase and its Variants

10.4.1 Procedure 1: Asymmetric Decarboxylation of Arylmalonate

10.4.2 Procedure 2: Enzymatic Racemization of Profens

10.4.3 Conclusion

References

10.5 Improved Enzymatic Preparation of 1-Deoxy-d-xylulose 5-Phosphate

10.5.1 Synthesis of DXP

10.5.2 Purification of DXP

10.5.3 Conclusion

References

10.6 On the Use of 2-Methyltetrahydrofuran (2-MeTHF) as Bio-Based (Co-) Solvent in Biotransformations

10.6.1 The Quest for Efficient and Bio-Based (Co-) Solvents

10.6.2 Case Study 1: Alcohol Dehydrogenase Catalyzed Enantioselective Ketone Reduction using 2-MeTHF as (Co-) Solvent

10.6.3 Case Study 2: Benzaldehyde Lyase (BAL) Catalyzed Enantioselective C–C Bond Formation using 2-MeTHF as (Co-) Solvent

10.6.4 Concluding Remarks

Acknowledgements

References

10.7 The Lipase-Catalyzed Asymmetric Michael Addition of Thienyl Nitroolefin to Acetylacetone

10.7.1 Procedure 1: The Lipozyme TLIM Catalyzed Michael Addition of Thienyl Nitroolefin to Acetylacetone

10.7.2 Procedure 2: Regeneration and Reuse of Lipozyme TLIM

10.7.3 Conclusion

References

Chapter 11: Halogenation/Dehalogenation/Heteroatom Oxidation

11.1 Preparation of Halogenated Molecules by a Fungal Flavin-Dependent Halogenase Heterologously Expressed in Escherichia coli

11.1.1 Whole-Cell Biocatalytic Halogenation of Dihydroresorcylide

11.1.2 Conclusion

References and Notes

11.2 Preparation of Optically Pure Haloalkanes and Alcohols by Kinetic Resolution Using Haloalkane Dehalogenases

11.2.1 Procedure 1: Kinetic Resolution of α-Bromoesters and β-Bromoalkanes

11.2.2 Procedure 2: Gram-Scale Synthesis of (S)-2-Bromopentane

11.2.3 Conclusions

Acknowledgements

References

11.3 Preparation of Enantiopure Sulfoxides by Enantioselective Oxidation with Whole Cells of Rhodococcus sp. ECU0066

11.3.1 Procedure: Preparation of (S)-Phenyl Methyl Sulfoxide 1a

11.3.2 Conclusion

References and Notes

11.4 Kinetic Resolution of an Insecticidal Dithiophosphate by Chloroperoxidase Catalyzed Oxidation of the Thiophosphoryl Group

11.4.1 Procedure: Kinetic Resolution of Racemic Dithiophosphate 1 by Oxidation with CPO/H2O2 System

11.4.2 Conclusion

References

Chapter 12: Tandem and Sequential Multi-Enzymatic Syntheses

12.1 Production of Isorhamnetin 3-O-Glucoside in Escherichia coli Using Engineered Glycosyltransferase

12.1.1 Materials and Equipment

12.1.2 Procedure

12.1.3 Analytical Methods

12.1.4 Conclusion

References and Notes

12.2 Multienzymatic Preparation of (–)-3-(Oxiran-2-yl)Benzoic Acid

12.2.1 Materials and Equipment

12.2.2 Procedure

12.2.3 Work Up Procedure

12.2.4 Analytical Methods

12.2.5 Conclusion

References and Notes

12.3 Enzymatic Synthesis of Carbohydrates from Dihydroxyacetone and Aldehydes by a One Pot Enzyme Cascade Reaction

12.3.1 Procedure: Synthesis of 5,6-Dideoxy-D-threo-2-hexulose (3S,4R)

12.3.2 Conclusion

References

12.4 Aldolase Based Multi-Enzyme System for Carbon–Carbon Bond Formation

12.4.1 Procedure 1: One Pot/One Step

12.4.2 Procedure 2: One Pot/Two Steps

12.4.3 Analytical Data for the Products from Aldehyde 13

12.4.4 Conclusion

Acknowledgements

References

12.5 Tandem Biocatalytic Process for the Kinetic Resolution of β-Phenylalanine and its Analogs

12.5.1 Procedure 1: Expression and Purification of a Mutated Phenylalanine Aminomutase (PAM-Q319M) and Phenylalanine Ammonia Lyase (PAL)

12.5.2 Procedure 2: Kinetic Resolution of Racemic β-Phenylalanine

12.5.3 Conclusion

References

12.6 A Chemoenzymatic Synthesis of a Deoxy Sugar Ester of N-Boc-Protected L-Tyrosine

12.6.1 Procedure 1: The O-Alkylation of Carboxylic Acid and Lipase-Catalyzed Deacetylation (Performed as a “One-Pot Synthesis”)

12.6.2 Procedure 2: Lipase-Catalyzed Acetylation of Hemiacetal 3

12.6.3 Procedure 3: Lipase-Catalyzed Deacetylation of Compound 4

12.6.4 Conclusion

References

12.7 Electrochemical Systems for the Recovery of Succinic Acid from Fermentations

12.7.1 Materials and Equipment (Fermentation)

12.7.2 Analytical Method

12.7.3 Culture of Actinobacillus succinogenes

12.7.4 Fermentation Media

12.7.5 Fermentation

12.7.6 Work Up Electrodialysis Conditions

12.7.7 Conclusion

References and Notes

Appendix 1

Index

This edition first published 2012

© 2012 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Practical methods for biocatalysis and biotransformations / edited by John

Whittall, Peter W. Sutton. – 2

p. cm.

Includes bibliographical references and index.

ISBN 978-1-119-99139-7 (cloth)

1. Enzymes–Biotechnology. 2. Biotransformation (Metabolism) 3. Organic

compounds–Synthesis. I. Whittall, John. II. Sutton, Peter (Peter W.)

TP248.65.E59P73 2012

572–dc23

2012005816

List of Contributors

Joseph P. Adams GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK

Joong-Hoon Ahn Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 1 Hwayang-Dong, Gwangjin-gu, Seoul 143-701, Republic of Korea

Ian Archer Ingenza Limited, Joseph Black Building, King's Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK

Daniel Auriol LIBRAGEN, 3 Rue des Satellites, 31400 Toulouse, France

Manuela Avi Lonza AG, CH-3930 Visp, Schweiz, Switzerland

Kevin R. Bailey Manchester Interdisciplinary Biocentre (MIB), University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK

Neil Barnwell AstraZeneca Global Process R&D, Bakewell Road, Loughborough, Leicestershire, UK

Marco van den Berg DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613AX Delft, The Netherlands

Moira L. Bode CSIR Biosciences, PO Box 365, Pretoria 0001, South Africa

Alessandra Bonamore Dipartimento di Scienze Biochimiche, Sapienza University, Rome, Italy; and MOLIROM s.r.l, Rome, Italy

Uwe T. Bornscheuer Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany

Dean Brady CSIR Biosciences, PO Box 365, Pretoria 0001, South Africa

Eva Branda Department of Applied Biology and Industrial Yeasts Collection DBVPG, Borgo XX Giugno 74, University of Perugia, 06121 Perugia, Italy

Christoph Brandenbusch Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany

Cecilia Branneby Cambrex Karlskoga AB, Sweden

Gary Breen GlaxoSmithKline, 1 Pioneer Sector 1, Singapore 628413

Elisabetta Brenna Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy

Maria S. Brown Biocatalysis Center of Emphasis, Chemical R&D, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Pfizer, Groton, Connecticut, USA

Magorzata Brzeziska-Rodak Wrocaw University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wybrzee Wyspiaskiego 27, 50-370 Wrocaw, Poland

Bruno Bühler Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany

Colin M. Burns Pfizer Worldwide Research and Development, Department of Chemical Research and Development, Ramsgate Road, Kent, CT13 9NJ, UK

Michael P. Burns Biocatalysis Center of Emphasis, Chemical R&D, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Pfizer, Groton, Connecticut, USA

Pietro Buzzini Department of Applied Biology and Industrial Yeasts Collection DBVPG, Borgo XX Giugno 74, University of Perugia, 06121 Perugia, Italy

Jian-Feng Cai School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China

John Carey Reckitt Benckiser Pharmaceuticals, Dansom Lane, Hull, HU8 7DS, UK

Elisa Caselli Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy

Jim Cawley Biocatalysis Center of Emphasis-CRD, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Pfizer, Groton, Connecticut, USA

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!