63,99 €
Detailed guidance on the mathematics behind equity derivatives Problems and Solutions in Mathematical Finance Volume II is an innovative reference for quantitative practitioners and students, providing guidance through a range of mathematical problems encountered in the finance industry. This volume focuses solely on equity derivatives problems, beginning with basic problems in derivatives securities before moving on to more advanced applications, including the construction of volatility surfaces to price exotic options. By providing a methodology for solving theoretical and practical problems, whilst explaining the limitations of financial models, this book helps readers to develop the skills they need to advance their careers. The text covers a wide range of derivatives pricing, such as European, American, Asian, Barrier and other exotic options. Extensive appendices provide a summary of important formulae from calculus, theory of probability, and differential equations, for the convenience of readers. As Volume II of the four-volume Problems and Solutions in Mathematical Finance series, this book provides clear explanation of the mathematics behind equity derivatives, in order to help readers gain a deeper understanding of their mechanics and a firmer grasp of the calculations. * Review the fundamentals of equity derivatives * Work through problems from basic securities to advanced exotics pricing * Examine numerical methods and detailed derivations of closed-form solutions * Utilise formulae for probability, differential equations, and more Mathematical finance relies on mathematical models, numerical methods, computational algorithms and simulations to make trading, hedging, and investment decisions. For the practitioners and graduate students of quantitative finance, Problems and Solutions in Mathematical Finance Volume II provides essential guidance principally towards the subject of equity derivatives.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 651
Veröffentlichungsjahr: 2017
For other titles in the Wiley Finance series please see www.wiley.com/finance
Volume 2: Equity Derivatives
Eric Chin, Dian Nel and Sverrir Ólafsson
This edition first published 2017 © 2017 John Wiley & Sons, Ltd
Registered officeJohn Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.
Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
A catalogue record for this book is available from the Library of Congress.
A catalogue record for this book is available from the British Library.
ISBN 978-1-119-96582-4 (hardback) ISBN 978-1-119-96610-4 (ebk) ISBN 978-1-119-96611-1 (ebk) ISBN 978-1-119-19219-0 (obk)
Cover design: Cylinder Cover image: © Attitude/Shutterstock
“Blue dye is derived from the indigo plant and surpassed its parental colour”Xunzi, An Exhortation to Learning
Preface
About the Authors
1 Basic Equity Derivatives Theory
1.1 Introduction
1.2 Problems and Solutions
2 European Options
2.1 Introduction
2.2 Problems and Solutions
3 American Options
3.1 Introduction
3.2 Problems and Solutions
4 Barrier Options
4.1 Introduction
4.2 Problems and Solutions
5 Asian Options
5.1 Introduction
5.2 Problems and Solutions
6 Exotic Options
6.1 Introduction
6.2 Problems and Solutions
7 Volatility Models
7.1 Introduction
7.2 Problems and Solutions
Appendix A Mathematics Formulae
Appendix B Probability Theory Formulae
Appendix C Differential Equations Formulae
Bibliography
Notation
Index
EULA
Chapter 1
Table 1.1
Table 1.2
Table 1.3
Table 1.4
Chapter 2
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Chapter 4
Table 4.1
Cover
Table of Contents
Preface
ix
x
xi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
130
131
129
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
351
352
353
354
355
356
357
358
359
360
361
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
400
401
402
403
404
405
406
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
427
428
429
430
431
432
433
434
435
436
437
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
821
822
823
824
825
826
827
828
829
Mathematical finance is a highly challenging and technical discipline. Its fundamentals and applications are best understood by combining a theoretically solid approach with extensive exercises in solving practical problems. That is the philosophy behind all four volumes in this series on mathematical finance. This second of four volumes in the series Problems and Solutions in Mathematical Finance is devoted to the discussion of equity derivatives. In the first volume we developed the probabilistic and stochastic methods required for the successful study of advanced mathematical finance, in particular different types of pricing models. The techniques applied in this volume assume good knowledge of the topics covered in Volume 1. As we believe that good working knowledge of mathematical finance is best acquired through the solution of practical problems, all the volumes in this series are built up in a way that allows readers to continuously test their knowledge as they work through the texts.
This second volume starts with the analysis of basic derivatives, such as forwards and futures, swaps and options. The approach is bottom up, starting with the analysis of simple contracts and then moving on to more advanced instruments. All the major classes of options are introduced and extensively studied, starting with plain European and American options. The text then moves on to cover more complex contracts such as barrier, Asian and exotic options. In each option class, different types of options are considered, including time-independent and time-dependent options, or non-path-dependent and path-dependent options.
Stochastic financial models frequently require the fixing of different parameters. Some can be extracted directly from market data, others need to be fixed by means of numerical methods or optimisation techniques. Depending on the context, this is done in different ways. In the risk-neutral world, the drift parameter for the geometric Brownian motion (Black–Scholes model) is extracted from the bond market (i.e., the returns on risk-free debt). The volatility parameter, in contrast, is generally determined from market prices, as the so-called implied volatility. However, if a stochastic process is to be fitted to known price data, other methods need to be consulted, such as maximum-likelihood estimation. This method is applied to a number of stochastic processes in the chapter on volatility models.
In all option models, volatility presents one of the most important quantities that determine the price and the risk of derivatives contracts. For this reason, considerable effort is put into their discussion in terms of concepts, such as implied, local and stochastic volatilities, as well as the important volatility surfaces.
At the end of this volume, readers will be equipped with all the major tools required for the modelling and the pricing of a whole range of different derivatives contracts. They will therefore be ready to tackle new techniques and challenges discussed in the next two volumes, including interest-rate modelling in Volume 3 and foreign exchange/commodity derivatives in Volume 4.
As in the first volume, we have the following note to the student/reader: Please try hard to solve the problems on your own before you look at the solutions!
Eric Chin is a quantitative analyst at an investment bank in the City of London where he is involved in providing guidance on price testing methodologies and their implementation, formulating model calibration and model appropriateness on commodity and credit products. Prior to joining the banking industry he worked as a senior researcher at British Telecom investigating radio spectrum trading and risk management within the telecommunications sector. He holds an MSc in Applied Statistics and an MSc in Mathematical Finance both from University of Oxford. He also holds a PhD in Mathematics from University of Dundee.
Dian Nel has more than 10 years of experience in the commodities sector. He currently works in the City of London where he specialises in oil and gas markets. He holds a BEng in Electrical and Electronic Engineering from Stellenbosch University and an MSc in Mathematical Finance from Christ Church, Oxford University. He is a Chartered Engineer registered with the Engineering Council UK.
Sverrir Ólafsson is Professor of Financial Mathematics at Reykjavik University; a Visiting Professor at Queen Mary University, London and a director of Riskcon Ltd, a UK based risk management consultancy. Previously he was a Chief Researcher at BT Research and held academic positions at The Mathematical Departments of Kings College, London; UMIST Manchester and The University of Southampton. Dr Ólafsson is the author of over 95 refereed academic papers and has been a key note speaker at numerous international conferences and seminars. He is on the editorial board of three international journals. He has provided an extensive consultancy on financial risk management and given numerous specialist seminars to finance specialists. In the last five years his main teaching has been MSc courses on Risk Management, Fixed Income, and Mathematical Finance. He has an MSc and PhD in mathematical physics from the Universities of Tübingen and Karlsruhe respectively.
