Product Life-Cycle Management -  - E-Book

Product Life-Cycle Management E-Book

0,0
207,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book gives a comprehensive view of the most recent major international research in the field of tolerancing, and is an excellent resource for anyone interested in Computer Aided Tolerating. It is organized into 4 parts. Part 1 focuses on the more general problems of tolerance analysis and synthesis, for tolerancing in mechanical design and manufacturing processes. Part 2 specifically highlights the simulation of assembly with defects, and the influence of tolerances on the quality of the assembly. Part 3 deals with measurement aspects, and quality control throughout the life cycle. Different measurement technologies and methods for estimating uncertainty are considered. In Part 4, different aspects of tolerancing and their interactions are explored, from the definition of functional requirement to measurement processes in a PLM approach.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 674

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Preface

PART I: Tolerance Analysis and Synthesis

Chapter 1: A New Method of Expressing Functional Requirements and How to Allocate Tolerance to Parts

1.1. Introduction

1.2. Brief review

1.3. Proposed method

1.4. Discussion

1.5. Bibliography

Chapter 2: A Parametric Approach to Determine Minimum Clearance in Overconstrained Mechanisms

2.1. Introduction

2.2. Compatibility relations between specification parameters

2.3. Framework for minimum clearance determination

2.4. Application

2.5. Conclusion

2.6. Bibliography

Chapter 3: Quick GPS: Tolerancing of an Isolated Part

3.1. Introduction

3.2. Mechanism definition

3.3. Datum system specifications

3.4. Relative position of reference frames

3.5. VBA application

3.6. Conclusion

3.7. Bibliography

Chapter 4: Synthesis and Statistical Analysis for 3D Tolerancing

4.1. Introduction

4.2. Stack-up tolerance synthesis

4.3. Serial mechanisms with non-perfect contacts

4.4. “Reducible” structure

4.5. Example of the pin-hole assembly

4.6. Conclusion and discussion

4.7. Bibliography

Chapter 5: Reliability Analysis of the Functional Specification Applied to a Helicopter Gas Turbine

5.1. Introduction

5.2. Studied case

5.3. Deterministic approach

5.4. Probabilistic approach

5.5. Conclusion

5.6. Acknowledgments

5.7. Bibliography

Chapter 6: Inertial Tolerancing According to ISO GPS

6.1. Introduction

6.2. Tolerance synthesis

6.3. 3D inertia

6.4. Conclusions

6.5. Bibliography

Chapter 7: Tolerance Analysis Based on Quantified Constraint Satisfaction Problems

7.1. Introduction

7.2. Quantifier notion and mathematical formulation of tolerance synthesis

7.3. Worst case tolerance analysis based on quantified constraint satisfaction problems

7.4. Statistical tolerance analysis based on constraint satisfaction problems and Monte Carlo simulation

7.5. Applications

7.6. Discussion

7.7. Bibliography

Chapter 8: Tolerance Analysis in Manufacturing Using the MMP, Comparison and Evaluation of Three Different Approaches

8.1. Introduction

8.2. MMP

8.3. Tolerance analysis and virtual gauge

8.4. Worst case searching

8.5. Combined approach

8.6. Monte Carlo simulation

8.7. Example and comparison

8.8. Conclusion

8.9. Bibliography

PART II: Simulation of Assemblies

Chapter 9: A Chronological Framework for Virtual Sheet Metal Assembly Design

9.1. Introduction

9.2. Proposed framework

9.3. Summary and future work

9.4. Acknowledgments

9.5. Bibliography

Chapter 10: A Method to Optimize Geometric Quality and Motion Feasibility of Assembly Sequences

10.1. Introduction

10.2. Modeling and algorithms

10.3. Assembly planning

10.4. Industrial test case

10.5. Conclusions and future work

10.6. Acknowledgments

10.7. Bibliography

Chapter 11: Modeling and Simulation of Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies

11.1. Introduction

11.2. SVA-TOL methodology overview

11.3. Assembly constraint modeling

11.4. Case study one: assembly of two-part assembly

11.5. Case study two: industrial application

11.6. Conclusions

11.7. Bibliography

Chapter 12: Tolerance Analysis with Detailed Part Modeling

12.1. Introduction

12.2. Related work

12.3. The proposed modeling and analysis of toleranced assemblies

12.4. Simulation of non-ideal parts

12.5. Relative positioning

12.6. Analysis of the positioned assemblies

12.7. Example

12.8. Summary

12.9. Acknowledgements

12.10. Bibliography

Chapter 13: Assembly Method Comparison Including Form Defect

13.1. Introduction

13.2. Geometric model for simulation

13.3. Experimentation

13.4. Result discussion

13.5. Summary

13.6. Bibliography

Chapter 14: Influence of Geometric Defects on Service Life

14.1. Introduction

14.2. Calculation methodology of contact pressure and orbital speed variation

14.3. Simulation

14.4. Summary

14.5. Bibliography

Chapter 15: GapSpace Multi-dimensional Assembly Analysis

15.1. Introduction

15.2. Representing dimensions and tolerances

15.3. Geometric tolerances

15.4. Perfect form tolerance zones

15.5. Assembly tolerance specification

15.6. Floating assembly

15.7. Kinematic assembly

15.8. Manufacturing dimensioning schemes

15.9. The revised 2D tolerance chart

15.10. Parametric representation of the PF-tolerance zone of a CS-feature

15.11. Surfaces of revolution

15.12. Nominal dimensions of the CS

15.13. 1D constraining simplices

15.14. 2D constraining simplices

15.15. Case study

15.16. Conclusion

15.17. Acknowledgments

15.18. Bibliography

PART III: Measurement

Chapter 16: Impact of the Sampling Strategy on Geometrical Checking Uncertainties

16.1. Introduction

16.2. Geometrical verification and virtual gauges

16.3. Field of probability of the presence of matter

16.4. Virtual gauges

16.5. Interference probability map

16.6. Experiment

16.7. Conclusion

16.8. Bibliography

Chapter 17: Predetermination of Measurement Uncertainty in the Application of Computed Tomography

17.1. Introduction

17.2. Prior investigations

17.3. Measurements of user-controllable influences

17.4. Estimation of influences

17.5. Calculation of the task-specific measurement uncertainty according to GUM

17.6. Summary

17.7. Acknowledgments

17.8. Bibliography

Chapter 18: Application of Function Oriented Parameters for Areal Measurements in Surface Engineering

18.1. Introduction

18.2. Surface measurements

18.3. Functional parameters

18.4. Characterization of the whole application

18.5. Case study: spreading liquid on metal su rfaces

18.6. Conclusions

18.7. Acknowledgments

18.8. Bibliography

Chapter 19: Validation of a Reception or Production Control Process by the Inertial Indicator IG

19.1. Introduction

19.2. Comparison of the “production controls” and “reception controls” approaches

19.3. Production bias and measure bias

19.4. Inertial capability

19.5. Inertia of the control process and inertia of the production process

19.6. Inertia of the control process and total customer inertia (control of reception)

19.7. Conclusions

19.8. Bibliography

Chapter 20: Detection of Areas with Critically Reduced Thickness of Formed Sheet Metal Parts Using Two Oppositely Positioned Fringe Projection Systems

20.1. Introduction

20.2. Methods

20.3. Visualization and discussion of results

20.4. Summary

20.5. Acknowledgments

20.6. Bibliography

Chapter 21: Variability of the Manufacturing Process in the GPS Framework: A Case Study

21.1. Introduction

21.2. Variability sources

21.3. Simulations

21.4. Simulation with seasonal trend decomposition (STL)

21.5. Summary

21.6. Bibliography

Chapter 22: Virtual CMM-based Sampling Strategy Optimization

22.1. Introduction

22.2. State of the art

22.3. Proposed methodology

22.4. Case study

22.5. Conclusions

22.6. Acknowledgments

22.7. Bibliography

Chapter 23: Impact of Workpiece Shape Deviations in Coordinate Metrology

23.1. Introduction

23.2. Evaluation in coordinate metrology

23.3. The Jackknife

23.4. Application to CMM data

23.5. Simulation

23.6. Summary and outlook

23.7. Bibliography

Chapter 24: Quality Assurance of Micro-gears via 3D Surface Characterization

24.1. Introduction

24.2. Test specimen and experimental equipment

24.3. 3D characteriza tion

24.4. Summary

24.5. Acknowledgments

24.6. Bibliography

PART IV: Tolerancing in the PLM

Chapter 25: Geometric Specification at the Beginning of the Product Lifecycle

25.1. Introduction

25.2. Study of the skeleton

25.3. Study of the functional surfaces

25.4. Specification

25.5. Conclusion

25.6. Bibliography

Chapter 26: Ontological Model of Tolerances for Interoperability in Product Lifecycle

26.1. Introduction

26.2. Ontology

26.3. Literature survey

26.4. Ontology of tolerances

26.5. Example of tolerance ontology instantiation

26.6. Summary

26.7. Bibliography

Chapter 27: A PLM-Based Multi-Sensor Integration Measurement System for Geometry Processing

27.1. Introduction

27.2. Sensor integration methodology

27.3. Ontology modeling in a PLM-context

27.4. Geometry processing

27.5. Experiments validation

27.6. Conclusion

27.7. Acknowledgments

27.8. Bibliography

Chapter 28: Comparison of Gear Geometric Specification Models Regarding the Functional Aspect

28.1. Introduction

28.2. Specification models

28.3. Comparison method

28.4. Criteria comparison

28.5. Conclusion

28.6. Bibliography

Chapter 29: Effects of Geometric Variation on Perceived Quality

29.1. Introduction

29.2. A framework for describing visual robustness to geometric variation

29.3. Visual fit complexity assessment method

29.4. Discussion and conclusions

29.5. Bibliography

Chapter 30: Geometric Requirement Variations Throughout the Product Lifecycle

30.1. Introduction

30.2. Literature review

30.3. Definitions and concepts

30.4. Functional requirements throughout lifecycle stages

30.5. Case study: a simple 1D crosshead guide

30.6. Conclusion and perspectives

30.7. Acknowledgments

30.8. Bibliography

List of Authors

Index

First published 2010 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27–37 St George’s Road London SW19 4EU UKwww.iste.co.ukJohn Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USAwww.wiley.com

© ISTE Ltd 2012

The rights of Max Giordano, Luc Mathieu, François Villeneuve to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Giordano, Max. Product lifecycle management : geometric variations / Max Giordano, Luc Mathieu, François Villeneuve. p. cm.

Includes bibliographical references and index.

ISBN 978-1-84821-276-3

1. Product life cycle--Congresses. 2. Tolerance (Engineering)--Congresses. 3. Geometry, Descriptive.-- Congresses. I. Mathieu, Luc, 1954- II. Villeneuve, François, 1960- III. Title. TS172.G56 2010 620'.0045--dc22

201002930

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-276-3

Preface

Computer-aided tolerancing (CAT) is an important topic in the field of mechanical design and production manufacturing.

Every two years, since 1981, the CIRP (International Institution for Production Engineering Research) has organized a seminar on “CAT”. In 2009, this CAT seminar became the CAT Conference. Control of the geometric quality is essential in the whole product lifecycle management (PLM), from the expression of functional requirements to recycling. The necessity of optimizing design and manufacturing processes, saving materials and energy, guaranteeing safety, always respecting more numerous functional constraints, imposes an increased rigor in the control process of the product geometric quality.

Previous research in the field of tolerancing is particularly focused on the modeling for the calculation assessment of 3D specifications, or on the processes of production and inspection. We should not forget that these various aspects are connected and impose a global vision of the “chain of the geometric quality” in the PLM.

The previous conferences made it possible to show the advances in these various domains and their applications for systems of CAT. This 2009 CAT conference tried to extend those preoccupations to the entire global product life cycle.

The subject of the present book Product Lifecycle Management focuses on the importance of geometric product quality interconnected in design, production manufacturing and inspection processes. In any design project development, the cost of design change increases with project time quasi-exponentially. To reduce costs, design parameters that influence the geometric quality must be defined and their influence must be known.

Increasingly realistic simulation software must be used with the best parameters and coherent data for all the process stages of design, manufacturing, assembly and inspection.

This book is an excellent resource for anyone interested in CAT, and it is intended for a wide audience, including:

– researchers in the fields of product design, computer-aided process planning, precision engineering, inspection, quality, inspection and dimensional and geometric tolerancing;

– teachers, instructors and students of design courses that are offered either for degrees by universities and technical schools, or for professional development through commercial short-courses;

– practitioners of design, design engineers, manufacturing engineers, staff in R&D and production departments at industries that make mechanical components and machines;

– software developers for CAD/CAM/CAX and CAT application packages;

– technicians and engineers of standardization, who are interested in the evolving ISO standards for tolerancing in mechanical design, manufacturing, and inspection;

– individuals interested in design, assembly, manufacturing, precision engineering, inspection, and CAD/CAM.

Following the editor’s preface, the book is organized into 4 parts:

– tolerance analysis and synthesis;

– simulation of assemblies;

– measurement;

– tolerancing in the PLM.

Although some chapters cover far more than one topic, due to the general theme of the conference, we have chosen the most representative topics to include in this book. These have been classified according to the most representative themes.

Part I focuses on the more general problems of tolerance analysis and synthesis, for tolerancing in mechanical design and manufacturing processes, including statistical tolerancing approaches, for the management of the quality connected to manufacturing. A large number of papers were presented on this important topic, only the most representative have been selected for this book.

Part II specifically highlights the simulation of assemblies with defects, and the influence of tolerances on the quality of the assembly. Several cases are considered such as the case of non-rigid parts or assemblies of parts taking into account the form defects.

Part III deals with measurement aspects, which are, of course, crucial to quality control throughout the lifecycle. Different measurement technologies and methods for estimating uncertainty are considered.

In Part IV, different aspects of tolerancing and their interactions are explored, from the definition of functional requirement to measurement processes in a PLM approach.

As editors, we wish to express our sincere gratitude to the authors for their contributions; the members of the international program committee and the organizing committee; the additional reviewers and our colleagues from the French Research Group in Tolerancing (GRT) for their efforts in getting this book published.

Max GIORDANO

University of Savoy

François VILLENEUVE

Grenoble University

Luc MATHIEU

ENS Cachan, University of Paris XI

August 2010

PART I

Tolerance Analysis and Synthesis

Chapter 2

A Parametric Approach to Determine Minimum Clearance in Overconstrained Mechanisms1

The need to introduce minimum clearances into an overconstrained mechanism in order to make it actually work, results from the observation of a physical effect. We will call it the clearance effect. The clearance effect transforms an overconstrained model that is perfectly accurate but impracticable, into a realistic, but limited accuracy, model.

We will first present vectorial modeling of a mechanism which enables us to generate a set of relations between the dimensional parameters of each part and the movement parameters of each joint; this equations system will represent the studied mechanism. Next, we will analyze this equations system, making a clear distinction between dimension and movement parameters, because we know that movement parameters may adjust naturally and instantaneously to slight variations in the dimension parameters of the machining parts.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!