166,99 €
Nuclear energy is the one energy source that could meet the world's growing energy needs and provide a smooth transition from fossil fuels to renewable energy in the coming decades and centuries. It is becoming abundantly clear that an increase in nuclear energy capacity will, and probably must, take place.
However, nuclear energy and the use of radionuclides for civilian and military purposes lead to extremely long-lived waste that is costly and highly problematic to deal with. Therefore, it is critically important ot understand the environmental implications of radionuclides for ecosystems and human health if nuclear energy is to be used to avoid the impending global energy crisis. The present volume of the EIC Books series addresses this critical need by providing fundamental information on environmentally significant radionuclides.
The content of this book was developed in collaboration with many of the authors of the chapters. Given the enormity of the subject the Editor and the Authors had to be judicious in selecting the chapters that would appropriately encompass and describe the primary topics, particularly those that are of importance to the health of ecosystems and humans. The resulting chapters were chosen to provide this information in a book of useful and appropriate length. Each chapter provides fundamental information on the chemistry of the radionuclides, their occurrence and movement in the enivornment, separation and analyses, and the technologies needed for their remediation and mitigation. The chapters are structured with a common, systematic format in order to facilitate comparions between elements and groups of elements.
About EIC Books
The Encyclopedia of Inorganic Chemistry (EIC) has proved to be one of the defining standards in inorganic chemistry, and most chemistry libraries around the world have access either to the first of second print editon, or to the online version. Many readers, however, prefer to have more concise thematic volumes, targeted to their specific area of interest. This feedback from EIC readers has encouraged the Editors to plan a series of EIC Books, focusing on topics of current interest. They will appear on a regular basis, and will feature leading scholars in their fields. Like the Encyclopedia, EIC Books aims to provide both the starting research student and the confirmed research worker with a critical distillation of the leading concepts in inorganic and bioinorganic chemistry, and provide a structured entry into the fields covered.
This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set.
This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1564
Veröffentlichungsjahr: 2013
RADIONUCLIDES in the Environment
Applications of Physical Methods to Inorganic and Bioinorganic ChemistryEdited by Robert A. Scott and Charles M. LukehartISBN 978-0-470-032176
Nanomaterials: Inorganic and Bioinorganic Perspectives Edited by Charles M. Lukehart and Robert A. Scott ISBN 978-0-470-51644-7
Computational Inorganic and Bioinorganic Chemistry Edited by Edward I. Solomon, R. Bruce King and Robert A. Scott ISBN 978-0-470-69997-3
Radionuclides in the Environment Edited by David A. Atwood ISBN 978-0-470-71434-8
Forthcoming
Energy Production and Storage: Inorganic Chemical Strategies for a Warming World Robert H. Crabtree ISBN 978-0-470-74986-9
In 1994 John Wiley & Sons published the Encyclopedia of Inorganic Chemistry (EIC). This 8-volume work was well received by the community, and has become a standard publication in all libraries serving the inorganic, coordination chemistry, organometallic and bioinorganic communities. The 10-volume Second Edition of the Encyclopedia was published in print in 2005, and online in 2006, on the major reference platform Wiley InterScience:
http://www.mrw.interscience.wiley.com/eic/
This edition first published 2010© 2010 John Wiley & Sons Ltd
Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.
The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.
Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
Editor-in-Chief
Robert H. CrabtreeYale University, New Haven, CT, USA
Section Editors
David A. AtwoodUniversity of Kentucky, Lexington, KY, USA
R. Bruce KingUniversity of Georgia, Athens, GA, USA
Charles M. LukehartVanderbilt University, Nashville, TN, USA
Robert A. ScottUniversity of Georgia, Athens, GA, USA
Michael BruceAdelaide, Australia
Fausto CalderazzoPisa, Italy
Tristram ChiversCalgary, Canada
Odile EisensteinMontpellier, France
C. David GarnerNottingham, UK
Malcolm GreenOxford, UK
Wolfgang HerrmannMunich, Germany
Jean-Marie LehnStrasbourg, France
François MatheyUniversity of California Riverside, CA, USA
Akira NakamuraOsaka, Japan
Jan ReedijkLeiden, The Netherlands
Vivian YamHong Kong
Contents
Title
Copyright
Contributors
Series Preface
Volume Preface
Natural RadioactivityDominic Larivière and Nicolas Guérin
1 SUMMARY
2 NATURAL RADIOACTIVITY
3 GLOSSARY
4 ACKNOWLEDGMENTS
5 RELATED ARTICLES
6 ABBREVIATIONS AND ACRONYMS
7 REFERENCES
Anthropogenic RadioactivityJerzy W. Mietelski
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 FATE OF ANTHROPOGENIC RADIONUCLIDES IN THE ENVIRONMENT
5 MEASUREMENT TECHNIQUES
6 REMEDIATION
7 CONCLUSIONS
8 GLOSSARY
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 FURTHER READING
12 REFERENCES
SpeciationBrit Salbu
1 SUMMARY
2 INTRODUCTION
3 FRACTIONATION TECHNIQUES
4 PARTICLE CHARACTERIZATION TECHNIQUES
5 CONCLUSIONS
6 RELATED ARTICLES
7 ABBREVIATIONS AND ACRONYMS
8 FURTHER READING
9 REFERENCES
TritiumDan Galeriu and Anca Melintescu
1 INTRODUCTION
2 OCCURRENCE
3 CHEMISTRY AND PHYSICS
4 ANALYTICAL CHARACTERIZATIONTECHNIQUES
5 SPECIATION
6 POTENTIAL HUMAN EXPOSURE
7 SEPARATION TECHNIQUES
8 REMEDIATION
9 CONCLUSIONS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
PotassiumTaehong Jun, Olga G. Tsay, and David G. Churchill
1 SUMMARY
2 OCCURRENCE, CHEMISTRY, AND SPECIATION
3 SOILS
4 SOIL-TO-PLANT TRANSFER AND PLANT DISTRIBUTION
5 DISTRIBUTION IN ANIMALS
6 MINERAL WATER AND DRINKING WATER
7 POTASSIUM-40 IN HUMANS AND TOTAL ANNUAL DOSE
8 BIOLOGICAL HALF-LIFE
9 ANALYTICAL CHARACTERIZATION
10 CONCLUSIONS
11 ACKNOWLEDGMENTS
12 RELATED ARTICLES
13 ABBREVIATIONS AND ACRONYMS
14 REFERENCES
CesiumEnrique Lima
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 REMEDIATION
8 CONCLUSIONS
9 GLOSSARY
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
StrontiumFrancisco Javier Guillén, Antonio Baeza, and Alejandro Salas
1 SUMMARY
2 OCCURRENCE
3 CHEMISTRY
4 SEPARATION TECHNIQUES
5 ANALYTICAL CHARACTERIZATION TECHNIQUES
6 SPECIATION
7 POTENTIAL HUMAN EXPOSURE
8 REMEDIATION
9 CONCLUSIONS
10 GLOSSARY
11 RELATED ARTICLES
12 ABBREVIATIONS AND ACRONYMS
13 FURTHER READING
14 REFERENCES
RadiumHildegarde Vandenhove, Freddy Verrezen, and Edward R. Landa
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 MITIGATION AND REMEDIATION
8 CONCLUSIONS
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
PhosphorusKibong Kim and David G. Churchill
1 SUMMARY
2 INTRODUCTION
3 ISOTOPIC ABUNDANCE AND OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 GEOLOGY
6 BIOLOGY
7 MEDICAL APPLICATIONS
8 ANALYTICAL CHARACTERIZATION, SEPARATION, AND MONITORING TECHNIQUES
9 REMEDIATION AND MITIGATION
10 CONCLUSION
11 ACKNOWLEDGMENTS
12 RELATED ARTICLES
13 ABBREVIATIONS AND ACRONYMS
14 FURTHER READING
15 REFERENCES
SulfurOlga G. Tsay and David G. Churchill
1 SUMMARY
2 ISOTOPIC ABUNDANCE AND OCCURRENCE
3 CHEMISTRY AND SPECIATION
4 GEOLOGICAL DATING
5 MEDICAL APPLICATIONS
6 ANALYTICAL CHARACTERIZATION AND SEPARATION TECHNIQUES
7 MITIGATION
8 CONCLUSION
9 ACKNOWLEDGMENTS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
SeleniumGeorge Shaw and Daniel Ashworth
1 SUMMARY
2 SELENIUM AND RADIOACTIVE SELENIUM
3 CONCENTRATIONS AND OCCURRENCE
4 ENVIRONMENTAL CHEMISTRY
5 ANALYTICAL SEPARATION AND CHARACTERIZATION TECHNIQUES
6 POTENTIAL HUMAN EXPOSURE
7 CONCLUSIONS
8 ACKNOWLEDGMENT
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
IndiumRudolf J. Wehmschulte
1 SUMMARY
2 OCCURRENCE
3 CHEMISTRY
4 ANALYSIS
5 REMEDIATION
6 GLOSSARY
7 RELATED ARTICLES
8 ABBREVIATIONS AND ACRONYMS
9 REFERENCES
ThalliumRudolf J. Wehmschulte
1 SUMMARY
2 OCCURRENCE
3 CHEMISTRY
4 TOXICITY
5 ANALYSIS
6 REMEDIATION
7 CONCLUSIONS
8 GLOSSARY
9 RELATED ARTICLES
10 REFERENCES
LeadAsnor Azrin Sabuti and Che Abd Rahim Mohamed
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 MITIGATION
8 CONCLUSIONS
9 GLOSSARY
10 ABBREVIATIONS AND ACRONYMS
11 RELATED ARTICLES
12 REFERENCES
PoloniumLubna Alam and Che Abd Rahim Mohamed
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 REMEDIATION
8 CONCLUSIONS
9 GLOSSARY
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 FURTHER READING
13 REFERENCES
ChlorineDaniel Ashworth and George Shaw
1 SUMMARY
2 CHLORINE ISOTOPES
3 ENVIRONMENTAL OCCURRENCE OF 36Cl
4 ENVIRONMENTAL CHEMISTRY
5 PLANT UPTAKE OF 36Cl
6 ANALYSIS OF 36Cl
7 HUMAN EXPOSURE
8 CONCLUSIONS
9 ABBREVIATIONS AND ACRONYMS
10 REFERENCES
IodineQinhong Hu and Jean E. Moran
1 SUMMARY
2 OCCURRENCE
3 CHEMISTRY
4 SEPARATION TECHNIQUES
5 ANALYTICAL CHARACTERIZATION TECHNIQUES
6 SPECIATION
7 GEOCHEMICAL BEHAVIOR
8 POTENTIAL HUMAN EXPOSURE
9 CONCLUSIONS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
XenonPaul R.J. Saey
1 SUMMARY
2 OCCURRENCE
3 RADIOXENON IN THE ATMOSPHERE
4 SEPARATION AND ANALYTICAL CHARACTERIZATION TECHNIQUES
5 CONCLUSIONS
6 GLOSSARY
7 END NOTES
8 RELATED ARTICLES
9 ABBREVIATIONS AND ACRONYMS
10 REFERENCES
RadonBliss L. Tracy
1 SUMMARY
2 OCCURRENCE AND PROPERTIES
3 ANALYTICAL CHARACTERIZATION TECHNIQUES
4 BEHAVIOR OF RADON AND ITS PROGENY IN THE ENVIRONMENT
5 POTENTIAL HUMAN EXPOSURE
6 REMEDIATION
7 CONCLUSIONS
8 GLOSSARY
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
CobaltEnrique Lima
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 REMEDIATION
8 CONCLUSIONS
9 GLOSSARY
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
TechnetiumQinhong Hu
1 SUMMARY
2 OCCURRENCE
3 CHEMISTRY
4 SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 POTENTIAL HUMAN EXPOSURE
8 CONCLUSIONS
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
RheniumKeiko Tagami and Shigeo Uchida
1 SUMMARY
2 OCCURRENCE
3 CHEMISTRY AND SPECIATION
4 SEPARATION TECHNIQUES
5 ANALYTICAL CHARACTERIZATION TECHNIQUES
6 REMEDIATION
7 CONCLUSION
8 ABBREVIATIONS AND ACRONYMS
9 REFERENCES
EuropiumXiangke Wang and Jiaxing Li
1 SUMMARY
2 INTRODUCTION
3 CHEMISTRY AND SPECIATION: NATURAL MATERIALS
4 CHEMISTRY AND SPECIATION IN WATER AND AIR
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 REMEDIATION AND MITIGATION TECHNIQUES
8 CONCLUSIONS
9 GLOSSARY
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
ThoriumZal Uyun Wan Mahmood and Che Abd Rahim Mohamed
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY AND SPECIATION
5 SEPARATION TECHNIQUES
6 ANALYTICAL CHARACTERIZATION TECHNIQUES
7 POTENTIAL ISOLATION TECHNIQUE
8 CONCLUSIONS
9 GLOSSARY
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
ProtactiniumAsamuddin Abu Hasan and Che Abd Rahim Mohamed
1 INTRODUCTION
2 OCCURRENCE
3 CHEMISTRY AND SPECIATION
4 SEPARATION TECHNIQUES
5 ANALYTICAL CHARACTERIZATION TECHNIQUES
6 CONCLUSIONS
7 RELATED ARTICLES
8 ABBREVIATIONS AND ACRONYMS
9 REFERENCES
UraniumHildegarde Vandenhove, Christian Hurtgen, and Timothy E. Payne
1 SUMMARY
2 INTRODUCTION
3 OCCURRENCE
4 CHEMISTRY, SPECIATION, AND MOBILITY
5 BIOLOGICAL UPTAKE
6 ANALYSIS
7 MITIGATION AND REMEDIATION
8 CONCLUSIONS
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 FURTHER READING
12 REFERENCES
NeptuniumWolfgang Runde and George Shaw. Goff
1 SUMMARY
2 INTRODUCTION
3 GENERAL CHEMISTRY
4 ANALYTICAL CHARACTERIZATION TECHNIQUES
5 SPECIATION
6 POTENTIAL HUMAN EXPOSURE
7 SEPARATION TECHNIQUES
8 CONCLUSIONS
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
PlutoniumMary P. Neu, George Shaw. Goff, and Wolfgang Runde
1 SUMMARY
2 INTRODUCTION
3 GENERAL CHEMISTRY
4 ANALYTICAL CHARACTERIZATION TECHNIQUES
5 SPECIATION
6 POTENTIAL HUMAN EXPOSURE
7 SEPARATION TECHNIQUES
8 CONCLUSIONS
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
Americium and CuriumWolfgang Runde
1 SUMMARY
2 INTRODUCTION
3 CHEMISTRY
4 ANALYTICAL CHARACTERIZATION TECHNIQUES
5 SPECIATION
6 POTENTIAL HUMAN EXPOSURE
7 SEPARATION TECHNIQUES
8 CONCLUSIONS
9 RELATED ARTICLES
10 ABBREVIATIONS AND ACRONYMS
11 REFERENCES
Oceans and SeasMichio Aoyama
1 SUMMARY
2 INTRODUCTION
3 SOURCES OF RADIONUCLIDES
4 AMOUNTS
5 GLOBAL DISTRIBUTION FROM FALLOUT
6 HUMAN EXPOSURE
7 CONCLUSIONS
8 GLOSSARY
9 ACKNOWLEDGMENTS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 FURTHER READING
13 REFERENCES
Pacific OceanMichio Aoyama
1 SUMMARY
2 INTRODUCTION
3 137Cs DISTRIBUTION
4 DISTRIBUTION OF TRANSURANICS
5 90Sr DISTRIBUTION
6 COMPARATIVE BEHAVIOR OF 137Cs, 90Sr, AND 239,240Pu IN SURFACE WATER
7 CONCLUSIONS
8 GLOSSARY
9 ACKNOWLEDGMENTS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 FURTHER READING
13 REFERENCES
Atlantic OceanPeter Kershaw
1 SUMMARY
2 INTRODUCTION
3 PHYSICAL DESCRIPTION
4 SOURCES RELATED TO HUMAN ACTIVITY
5 RADIONUCLIDE DISTRIBUTIONS IN THE ATLANTIC
6 RADIOLOGICAL CONSEQUENCES
7 CONCLUSIONS
8 RELATED ARTICLES
9 ABBREVIATIONS AND ACRONYMS
10 REFERENCES
Indian OceanPavel P. Povinec
1 SUMMARY
2 INTRODUCTION
3 HYDROGRAPHY
4 SOURCES
5 SAMPLING AND ANALYTICAL METHODS
6 DISTRIBUTION
7 TRANSPORT
8 CONCLUSIONS
9 ACKNOWLEDGMENTS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
Arctic OceanAgata Zaborska and JoLynn Carroll
1 SUMMARY
2 INTRODUCTION
3 RADIONUCLIDE SOURCES AND TRANSPORT PATHWAYS
4 DISTRIBUTION PATTERNS
5 ARCTIC BIOTA AND ECOSYSTEMS
6 THE FUTURE CHALLENGES OF A CHANGING ARCTIC
7 CONCLUSIONS
8 RELATED ARTICLES
9 ABBREVIATIONS AND ACRONYMS
10 REFERENCES
Mediterranean SeaRoberta Delfanti and Carlo Papucci
1 SUMMARY
2 INTRODUCTION
3 THE MEDITERRANEAN SEA
4 SOURCES AND CONTAMINANT ELEMENTS
5 RADIONUCLIDE DISTRIBUTION AND INVENTORIES IN THE WATER COLUMN
6 RADIONUCLIDES IN SEDIMENTS
7 HOT SPOTS
8 RADIONUCLIDE CONCENTRATION IN ORGANISMS
9 RADIONUCLIDE MASS BALANCE
10 CONCLUSIONS
11 RELATED ARTICLES
12 ABBREVIATIONS AND ACRONYMS
13 REFERENCES
Baltic SeaSven P. Nielsen, Maria Lüning, Erkki Ilus, Iisa Outola, Tarja Ikäheimonen, Jukka Mattila, Jürgen Herrmann, Günter Kanisch, and Iolanda Osvath
1 SUMMARY
2 INTRODUCTION
3 SOURCES OF ANTHROPOGENIC RADIOACTIVE SUBSTANCES
4 RADIONUCLIDES IN SEAWATER
5 RADIONUCLIDES IN SEDIMENTS
6 RADIONUCLIDES IN BIOTA
7 RADIOACTIVITY COMPARED TO OTHER SEA REGIONS
8 CONCLUSIONS
9 GLOSSARY
10 ACKNOWLEDGMENTS
11 RELATED ARTICLES
12 ABBREVIATIONS AND ACRONYMS
13 REFERENCES
Black SeaVictor Egorov, Sergey Gulin, Gennady Polikarpov, and Iolanda Osvath
1 SUMMARY
2 INTRODUCTION
3 RADIONUCLIDE SOURCES AND INPUTS
4 GEOCHEMICAL BEHAVIOR OF SOLUBLE AND PARTICLE-REACTIVE RADIONUCLIDES
5 RADIONUCLIDE PARTITIONING
6 GEOCHRONOLOGY OF RADIOACTIVE CONTAMINATION
7 RADIONUCLIDES IN MARINE BIOTA
8 CONCLUSIONS
9 GLOSSARY
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 REFERENCES
Global Trends in Cesium DistributionYayoi Inomata
1 SUMMARY
2 INTRODUCTION
3 THE HAM-GLOBAL DATABASE
4 HISTORICAL RECORD OF MEASUREMENT OF 137Cs CONCENTRATIONS DURING THE PERIOD FROM 1950 TO 2005
5 GLOBAL DISTRIBUTION OF 137Cs CONCENTRATIONS IN SURFACE SEAWATER FROM 1957 TO 2005
6 THE MAXIMUM 137Cs CONCENTRATION IN THE GLOBAL OCEAN
7 TEMPORAL VARIATION OF 137Cs CONCENTRATIONS IN THE SIGNIFICANT SOURCE REGIONS
8 COMPARISON OF TEMPORAL VARIATION PATTERNS OF 137Cs CONCENTRATIONS IN GLOBAL OCEAN SURFACE WATERS
9 137Cs CONCENTRATIONS IN THE SURFACE WATER IN THE GLOBAL OCEAN: PAST, PRESENT, AND FUTURE
10 GENERAL PATTERN OF SURFACE SEA WATER MASS CIRCULATION USING 137Cs AS CHEMICAL TRACER
11 CONCLUSIONS
12 GLOSSARY
13 ACKNOWLEDGMENTS
14 RELATED ARTICLES
15 ABBREVIATIONS AND ACRONYMS
16 FURTHER READING
17 REFERENCES
Civilian Nuclear AccidentsWolfgang Runde, Mary P. Neu, and George Shaw. Goff
1 SUMMARY
2 REACTOR ACCIDENTS
3 ACCIDENTS AT PROCESSING PLANTS
4 CONCLUSIONS
5 RELATED ARTICLES
6 ABBREVIATIONS AND ACRONYMS
7 REFERENCES
Oak Ridge ReservationPhilip M. Jardine, Scott C. Brooks, and David B. Watson
1 SUMMARY
2 INTRODUCTION
3 HISTORICAL MISSION AND THE GENERATION OF RADIOACTIVE ISOTOPES ON THE OAK RIDGE RESERVATION
4 SUBSURFACE DISPOSAL METHODS FOR RADIOLOGICAL WASTE AT ORNL (FORMERLY X-10)
5 DISPOSAL METHODS FOR RADIOLOGICAL WASTE AT THE Y-12 PLANT
6 SUBSURFACE PROCESSES CONTROLLING THE MIGRATION OF WASTE ON THE OAK RIDGE RESERVATION
7 REMEDIATION STRATEGIES ON THE ORR FOR THE CONTAINMENT OF RADIOACTIVE WASTE
8 CONCLUSION
9 ACKNOWLEDGMENTS
10 RELATED ARTICLES
11 ABBREVIATIONS AND ACRONYMS
12 FURTHER READING
13 REFERENCES
Index
Contributors
Asamuddin Abu Hasan
Universiti Kebangsaan Malaysia, Bangi, Malaysia
• Protactinium
Lubna Alam
Universiti Kebangsaan Malaysia, Bangi, Malaysia
• Polonium
Michio Aoyama
Meteorological Research Institute, Tsukuba, Japan
• Oceans and Seas• Pacific Ocean
Daniel Ashworth
United States Salinity Laboratory, Riverside, CA, USA
• Chlorine• Selenium
Antonio Baeza
University of Extremadura, Cáceres, Spain
• Strontium
Scott C. Brooks
Oak Ridge National Laboratory, Oak Ridge, TN, USA
• Oak Ridge Reservation
JoLynn Carroll
Akvaplan-niva, Polar Environmental Centre, Tromsø, Norway
• Arctic Ocean
David G. Churchill
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
• Potassium• Phosphorus • Sulfur
Roberta Delfanti
ENEA-Marine Environment Research Centre, La Spezia, Italy
• Mediterranean Sea
Victor Egorov
National Academy of Sciences of Ukraine, Crimea, Ukraine
• Black Sea
Dan Galeriu
“Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
• Tritium
George Shaw. Goff
Los Alamos National Laboratory, Los Alamos, NM, USA
• Civilian Nuclear Accidents• Neptunium • Plutonium
Nicolas Guérin
Université Laval, Québec, QC, Canada
• Natural Radioactivity
Francisco Javier Guillén
University of Extremadura, Cáceres, Spain
• Strontium
Sergey Gulin
National Academy of Sciences of Ukraine, Crimea, Ukraine
• Black Sea
Jürgen Herrmann
Federal Maritime and Hydrographic Agency, Hamburg, Germany
• Baltic Sea
Qinhong Hu
The University of Texas at Arlington, Arlington, TX, USA
• Iodine• Technetium
Christian Hurtgen
Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
• Uranium
Tarja Ikäheimonen
Radiation and Nuclear Safety Authority, Helsingfors, Finland
• Baltic Sea
Erkki Ilus
Radiation and Nuclear Safety Authority, Helsingfors, Finland
• Baltic Sea
Yayoi Inomata
Yayoi Inomata, Meteorological Research Institute, Tsukuba, Japan
• Global Trends in Cesium Distribution
Philip M. Jardine
University of Tennessee, Knoxville, TN, USA
• Oak Ridge Reservation
Taehong Jun
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
• Potassium
Günter Kanisch
Johann Heinrich von Thünen-Institute, Hamburg, Germany
• Baltic Sea
Peter Kershaw
The Centre for Environment, Fisheries & Aquaculture Science (Cefas) Lowestoft, UK
• Atlantic Ocean
Kibong Kim
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
• Phosphorus
Edward R. Landa
US Geological Survey, Reston, VA, USA
• Radium
Dominic Larivière
Université Laval, Québec, QC, Canada
• Natural Radioactivity
Jiaxing Li
Chinese Academy of Sciences, Hefei, People’s Republic of China
• Europium
Enrique Lima
Universidad Nacional Autónoma de México, México D.F., Mexico
• Cesium• Cobalt
Maria Lüning
Swedish Radiation Safety Authority, Solna, Sweden
• Baltic Sea
Jukka Mattila
Water and Environment of the River Kymi, Kouvola, Finland
• Baltic Sea
Anca Melintescu
“Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
• Tritium
Jerzy W. Mietelski
Institute of Nuclear Physics, Kraków, Poland
• Anthropogenic Radioactivity
Jean E. Moran
California State University, Hayward, CA, USA
• Iodine
Mary P. Neu
Los Alamos National Laboratory, Los Alamos, NM, USA
• Civilian Nuclear Accidents• Plutonium
Sven P. Nielsen
Technical University of Denmark, Roskilde, Denmark
• Baltic Sea
Iolanda Osvath
International Atomic Energy Agency, Monaco
• Baltic Sea• Black Sea
Iisa Outola
Radiation and Nuclear Safety Authority, Helsingfors, Finland
• Baltic Sea
Carlo Papucci
ENEA-Marine Environment Research Centre, La Spezia, Italy
• Mediterranean Sea
Timothy E. Payne
Australian Nuclear Science and Technology Organisation, Menai, NSW, Australia
• Uranium
Gennady Polikarpov
National Academy of Sciences of Ukraine, Crimea, Ukraine
• Black Sea
Pavel P. Povinec
Comenius University, Bratislava, Slovakia
• Indian Ocean
Che Abd Rahim Mohamed
Universiti Kebangsaan Malaysia, Bangi, Malaysia
• Lead• Polonium• Protactinium• Thorium
Wolfgang Runde
Los Alamos National Laboratory, Los Alamos, NM, USA
• Americium and Curium• Civilian Nuclear Accidents• Neptunium • Plutonium
Asnor Azrin Sabuti
Universiti Kebangsaan Malaysia, Bangi, Malaysia
• Lead
Paul R.J. Saey
Vienna University of Technology, Vienna, Austria
• Xenon
Alejandro Salas
University of Extremadura, Cáceres, Spain
• Strontium
Brit Salbu
Norwegian University of Life Sciences, Aas, Norway
• Speciation
George Shaw
University of Nottingham, Nottingham, UK
• Chlorine• Selenium
Keiko Tagami
National Institute of Radiological Sciences, Chiba, Japan
• Rhenium
Bliss L. Tracy
Radiation Protection Bureau Health Canada, Ottawa, ON, Canada
• Radon
Olga G. Tsay
Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
• Potassium• Sulfur
Shigeo Uchida
National Institute of Radiological Sciences, Chiba, Japan
• Rhenium
Hildegarde Vandenhove
Belgian Nuclear Research Centre (SCK
•CEN), Mol, Belgium • Radium• Uranium
Freddy Verrezen
Belgian Nuclear Research Centre (SCK
•CEN), Mol, Belgium • Radium
Zal Uyun Wan Mahmood
Universiti Kebangsaan Malaysia, Bangi, Malaysia
• Thorium
Xiangke Wang
Chinese Academy of Sciences, Hefei, People’s Republic of China
• Europium
David B. Watson
Oak Ridge National Laboratory, Oak Ridge, TN, USA
• Oak Ridge Reservation
Rudolf J. Wehmschulte
Florida Institute of Technology, Melbourne, FL, USA
• Indium• Thallium
Agata Zaborska
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
• Arctic Ocean
Series Preface
The success of the Encyclopedia of Inorganic Chemistry (EIC) has been very gratifying to the Editors. We felt, however, that not everyone would necessarily need access to the full ten volumes of EIC. Some readers might prefer to have more concise thematic volumes targeted to their specific area of interest. This idea encouraged us to produce a series of EIC Books, focusing on topics of current interest. These books will continue to appear on a regular basis and will feature leading scholars in their fields. Like the Encyclopedia, we hope that EIC Books will give both the starting research student and the confirmed research worker a critical distillation of the leading concepts and provide a structured entry into the fields covered.
Computer literature searches have become so easy that one could be led into thinking that the problem of efficient access to chemical knowledge is now solved. In fact, these searches often produce such a vast mass of material that the reader is overwhelmed. As Henry Kissinger has remarked, the end result is often a shrinking of one’s perspective. From studying the volumes that comprise the EIC Books series, we hope that readers will find an expanding perspective to furnish ideas for research, and a solid, up-to-date digest of current knowledge to provide a basis for instructors and lecturers.
I take this opportunity of thanking Bruce King, who pioneered the Encyclopedia of Inorganic Chemistry, my fellow editors, as well as the Wiley personnel, and, most particularly, the authors of the articles for the tremendous effort required to produce such a series on time. I hope that EIC Books will allow readers to benefit in a more timely way from the insight of the authors and thus contribute to the advance of the field as a whole.
Robert H. Crabtree Yale University Department of ChemistryJanuary 2009
Volume Preface
The vast majority of the world’s energy is being produced unsustainably with fossil fuels for which the global demand is expected to double by 2050. At current rates of usage coal, natural gas and petroleum could be depleted within 60 years. Renewable energy currently provides only about 4% of the world’s electricity and much less for transportation fuels (Scientific American, Sept. 2009, p. 56). While renewable energy sources such as wind and solar power have the potential to meet the world’s growing energy needs in the distant future these technologies will take a substantial amount of time to become established and will not be ready before fossil fuels become too costly or problematic to use. This looming energy crisis will be exacerbated by the known problems associated with fossil fuel consumption such as the likelihood of abrupt climate change, ocean acidification and the fact that hydrocarbons are a crucial feedstock for most of the commodities used in modern society. Future generations may well look back at this time in history and our profligate use of fossil fuels and wonder why we ever thought burning such a precious commodity was a good idea. The political and military costs associated with fossil fuel consumption only add to the critical need for establishing sustainable, large-scale sources of energy.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
