Reinforcement Learning for Finance - Samit Ahlawat - E-Book

Reinforcement Learning for Finance E-Book

Samit Ahlawat

0,0
36,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library.

Reinforcement Learning for Finance begins by describing methods for training neural networks. Next, it discusses CNN and RNN – two kinds of neural networks used as deep learning networks in reinforcement learning. Further, the book dives into reinforcement learning theory, explaining the Markov decision process, value function, policy, and policy gradients, with their mathematical formulations and learning algorithms. It covers recent reinforcement learning algorithms from double deep-Q networks to twin-delayed deep deterministic policy gradients and generative adversarial networks with examples using the TensorFlow Python library. It also serves as a quick hands-on guide to TensorFlow programming, covering concepts ranging from variables and graphs to automatic differentiation, layers, models, andloss functions.

After completing this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library.

What You Will Learn
  • Understand the fundamentals of reinforcement learning
  • Apply reinforcement learning programming techniques to solve quantitative-finance problems
  • Gain insight into convolutional neural networks and recurrent neural networks
  • Understand the Markov decision process

Who This Book Is For
Data Scientists, Machine Learning engineers and Python programmers who want to apply reinforcement learning to solve problems.

Das E-Book können Sie in einer beliebigen App lesen, die das folgende Format unterstützt:

PDF

Veröffentlichungsjahr: 2022

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.