150,99 €
Presents systems-based theory, methodology, and applications in risk modeling, assessment, and management
This book examines risk analysis, focusing on quantifying risk and constructing probabilities for real-world decision-making, including engineering, design, technology, institutions, organizations, and policy. The author presents fundamental concepts (hierarchical holographic modeling; state space; decision analysis; multi-objective trade-off analysis) as well as advanced material (extreme events and the partitioned multi-objective risk method; multi-objective decision trees; multi-objective risk impact analysis method; guiding principles in risk analysis); avoids higher mathematics whenever possible; and reinforces the material with examples and case studies. The book will be used in systems engineering, enterprise risk management, engineering management, industrial engineering, civil engineering, and operations research.
The fourth edition of Risk Modeling, Assessment, and Management features:
Risk Modeling, Assessment, and Management, Fourth Edition, is written for both undergraduate and graduate students in systems engineering and systems management courses. The text also serves as a resource for academic, industry, and government professionals in the fields of homeland and cyber security, healthcare, physical infrastructure systems, engineering, business, and more.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1688
Veröffentlichungsjahr: 2015
Cover
Title page
Preface to the Fourth Edition
The Companion Website
Acknowledgments
ACKNOWLEDGMENTS TO THE FIRST EDITION
ACKNOWLEDGMENTS TO THE SECOND EDITION
ACKNOWLEDGMENTS TO THE THIRD EDITION
ACKNOWLEDGMENTS TO THE FOURTH EDITION
Part I:
Fundamentals of Risk Modeling, Assessment, and Management
1
The Art and Science of Systems and Risk Analysis
1.1 INTRODUCTION
1.2 SYSTEMS ENGINEERING
1.3 RISK ASSESSMENT AND MANAGEMENT
1.4 CONCEPT ROAD MAP
1.5 EPILOGUE
REFERENCES
2
The Role of Modeling in the Definition and Quantification of the Risk Function
2.1 INTRODUCTION
2.2 THE RISK ASSESSMENT AND MANAGEMENT PROCESS: HISTORICAL PERSPECTIVES
2.3 INFORMATION, INTELLIGENCE, AND MODELS
2.4 THE BUILDING BLOCKS OF MATHEMATICAL MODELS
2.5 ON THE COMPLEX DEFINITION OF RISK, VULNERABILITY, AND RESILIENCE: A SYSTEMS-BASED APPROACH
2.6 ON THE DEFINITION OF VULNERABILITIES IN MEASURING RISKS TO SYSTEMS
2.7 ON THE DEFINITION OF RESILIENCE IN MEASURING RISK TO SYSTEMS
2.8 ON THE COMPLEX QUANTIFICATION OF RISK TO SYSTEMS
REFERENCES
3
Identifying Risk through Hierarchical Holographic Modeling and Its Derivatives
3.1 HIERARCHICAL ASPECTS
3.2 HIERARCHICAL OVERLAPPING COORDINATION
3.3 HHM
3.4 HHM AND THE THEORY OF SCENARIO STRUCTURING
3.5 ADAPTIVE MULTIPLAYER HHM GAME
3.6 WATER RESOURCES SYSTEM
3.7 SUSTAINABLE DEVELOPMENT
3.8 HHM IN A SYSTEM ACQUISITION PROJECT
3.9 SOFTWARE ACQUISITION
3.10 HARDENING THE WATER SUPPLY INFRASTRUCTURE
3.11 RISK ASSESSMENT AND MANAGEMENT FOR SUPPORT OF OPERATIONS OTHER THAN WAR
3.12 AUTOMATED HIGHWAY SYSTEM
3.13 FOOD-POISONING SCENARIOS
REFERENCES
4
Modeling and Decision Analysis
4.1 INTRODUCTION
4.2 DECISION RULES UNDER UNCERTAINTY
4.3 DECISION TREES
4.4 DECISION MATRIX
4.5 THE FRACTILE METHOD
4.6 TRIANGULAR DISTRIBUTION
4.7 INFLUENCE DIAGRAMS
4.8 POPULATION DYNAMIC MODELS
4.9 PSM
4.10 EXAMPLE PROBLEMS
REFERENCES
5
Multiobjective Trade-Off Analysis
5.1 INTRODUCTION
5.2 EXAMPLES OF MULTIPLE ENVIRONMENTAL OBJECTIVES
5.3 THE SURROGATE WORTH TRADE-OFF METHOD
5.4 CHARACTERIZING A PROPER NONINFERIOR SOLUTION
5.5 THE SWT METHOD AND THE UTILITY FUNCTION APPROACH
5.6 EXAMPLE PROBLEMS
5.7 SUMMARY
REFERENCES
6
Defining Uncertainty and Sensitivity Analysis
6.1 INTRODUCTION
6.2 SENSITIVITY, RESPONSIVITY, STABILITY, AND IRREVERSIBILITY
6.3 UNCERTAINTIES DUE TO ERRORS IN MODELING
6.4 CHARACTERIZATION OF MODELING ERRORS
6.5 UNCERTAINTY TAXONOMY
6.6 THE USIM
6.7 FORMULATION OF THE MULTIOBJECTIVE OPTIMIZATION PROBLEM
6.8 A ROBUST ALGORITHM OF THE USIM
6.9 INTEGRATION OF THE USIM WITH PARAMETER OPTIMIZATION AT THE DESIGN STAGE
6.10 CONCLUSIONS
REFERENCES
7
Risk Filtering, Ranking, and Management
7.1 INTRODUCTION
7.2 PAST EFFORTS IN RISK FILTERING AND RANKING
7.3 RFRM: A METHODOLOGICAL FRAMEWORK
7.4 CASE STUDY: AN OOTW
7.5 SUMMARY
REFERENCES
Part II:
Advances in Risk Modeling, Assessment, and Management
8
Risk of Extreme Events and the Fallacy of the Expected Value
8.1 INTRODUCTION
8.2 RISK OF EXTREME EVENTS
8.3 THE FALLACY OF THE EXPECTED VALUE
8.4 THE PMRM
8.5 GENERAL FORMULATION OF THE PMRM
8.6 SUMMARY OF THE PMRM
8.7 ILLUSTRATIVE EXAMPLE
8.8 ANALYSIS OF DAM FAILURE AND EXTREME FLOOD THROUGH THE PMRM
8.9 EXAMPLE PROBLEMS
8.10 SUMMARY
REFERENCES
9
Multiobjective Decision-Tree Analysis
9.1 INTRODUCTION
9.2 METHODOLOGICAL APPROACH
9.3 DIFFERENCES BETWEEN SODT AND MODT
9.4 SUMMARY
9.5 EXAMPLE PROBLEMS
REFERENCES
10
Multiobjective Risk Impact Analysis Method
10.1 INTRODUCTION
10.2 IMPACT ANALYSIS
10.3 THE MULTIOBJECTIVE, MULTISTAGE IMPACT ANALYSIS METHOD: AN OVERVIEW
10.4 COMBINING THE PMRM AND THE MMIAM
10.5 RELATING MULTIOBJECTIVE DECISION TREES TO THE MRIAM
10.6 EXAMPLE PROBLEMS
10.7 EPILOGUE
REFERENCES
11
Statistics of Extremes: Extension of the PMRM
11.1 A REVIEW OF THE PARTITIONED MULTIOBJECTIVE RISK METHOD
11.2 STATISTICS OF EXTREMES
11.3 INCORPORATING THE STATISTICS OF EXTREMES INTO THE PMRM
11.4 SENSITIVITY ANALYSIS OF THE APPROXIMATION OF
f
4
(·)
11.5 GENERALIZED QUANTIFICATION OF RISK OF EXTREME EVENTS
11.6 SUMMARY
11.7 EXAMPLE PROBLEMS
REFERENCES
12
Systems-Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication
12.1 INTRODUCTION
12.2 THE
JOURNEY
: THE GUIDING PRINCIPLES IN THE BROADER CONTEXT OF THE EMERGING NEXT GENERATION DEVELOPED BY THE FEDERAL AVIATION ADMINISTRATION
REFERENCES
13
Fault Trees
13.1 INTRODUCTION
13.2 BASIC FAULT-TREE ANALYSIS
13.3 RELIABILITY AND FAULT-TREE ANALYSIS
13.4 MINIMAL CUT SETS
13.5 THE DARE USING FAULT TREES
13.6 EXTREME EVENTS IN FAULT TREE ANALYSIS
13.7 AN EXAMPLE PROBLEM BASED ON A CASE STUDY
13.8 FAILURE MODE AND EFFECTS ANALYSIS AND FAILURE MODE, EFFECTS, AND CRITICALITY ANALYSIS
13.9 EVENT TREES
13.10 EXAMPLE PROBLEMS
REFERENCES
14
Multiobjective Statistical Method
14.1 INTRODUCTION
14.2 MATHEMATICAL FORMULATION OF THE INTERIOR DRAINAGE PROBLEM
14.3 FORMULATION OF THE OPTIMIZATION PROBLEM
14.4 THE MSM: STEP-BY-STEP
14.5 THE SWT METHOD
14.6 MULTIPLE OBJECTIVES
14.7 APPLYING THE MSM
14.8 EXAMPLE PROBLEMS
REFERENCES
15
Principles and Guidelines for Project Risk Management
15.1 INTRODUCTION
15.2 DEFINITIONS AND PRINCIPLES OF PROJECT RISK MANAGEMENT
15.3 PROJECT RISK MANAGEMENT METHODS
15.4 AIRCRAFT DEVELOPMENT EXAMPLE
15.5 QUANTITATIVE RISK ASSESSMENT AND MANAGEMENT OF SOFTWARE ACQUISITION
15.6 CRITICAL FACTORS THAT AFFECT SOFTWARE NONTECHNICAL RISK
15.7 BASIS FOR VARIANCES IN COST ESTIMATION
15.8 DISCRETE DYNAMIC MODELING
15.9 SUMMARY
REFERENCES
16
Modeling Complex Systems of Systems with Phantom System Models
16.1 INTRODUCTION
16.2 WHAT HAVE WE LEARNED FROM OTHER CONTRIBUTORS?
16.3 THE CENTRALITY OF THE STATES OF THE SYSTEM IN MODELING AND IN RISK ANALYSIS
16.4 THE CENTRALITY OF TIME IN MODELING MULTIDIMENSIONAL RISK, UNCERTAINTY, AND BENEFITS
16.5 EXTENSION OF HHM TO PSM
16.6 PSM AND META-MODELING
16.7 PSM LABORATORY
16.8 SUMMARY
REFERENCES
17
Adaptive Two-Player Hierarchical Holographic Modeling Game for Counterterrorism Intelligence Analysis
17.1 INTRODUCTION
17.2 BAYES’ THEOREM
17.3 MODELING THE MULTIPLE PERSPECTIVES OF COMPLEX SYSTEMS
17.4 ADAPTIVE TWO-PLAYER HHM GAME: TERRORIST NETWORKS VERSUS HOMELAND PROTECTION
17.5 THE BUILDING BLOCKS OF MATHEMATICAL MODELS AND THE CENTRALITY OF STATE VARIABLES IN INTELLIGENCE ANALYSIS
17.6 HIERARCHICAL ADAPTIVE TWO-PLAYER HHM GAME
17.7 COLLABORATIVE COMPUTING SUPPORT FOR ADAPTIVE TWO-PLAYER HHM GAMES
17.8 SUMMARY
REFERENCES
18
Inoperability Input–Output Model and Its Derivatives for Interdependent Infrastructure Sectors
18.1 OVERVIEW
18.2 BACKGROUND: THE ORIGINAL LEONTIEF INPUT–OUTPUT MODEL
18.3 INOPERABILITY INPUT–OUTPUT MODEL
18.4 REGIMES OF RECOVERY
18.5 SUPPORTING DATABASES FOR IIM ANALYSIS
18.6 NATIONAL AND REGIONAL DATABASES FOR IIM ANALYSIS
18.7 RIMS II
18.8 DEVELOPMENT OF THE IIM AND ITS EXTENSIONS
18.9 THE DYNAMIC IIM
18.10 PRACTICAL USES OF THE IIM
18.11 UNCERTAINTY IIM
18.12 EXAMPLE PROBLEMS
18.13 SUMMARY
REFERENCES
19
Case Studies
19.1 A RISK-BASED INPUT–OUTPUT METHODOLOGY FOR MEASURING THE EFFECTS OF THE AUGUST 2003 NORTHEAST BLACKOUT
19.2 SYSTEMIC VALUATION OF STRATEGIC PREPAREDNESS THROUGH APPLYING THE IIM WITH LESSONS LEARNED FROM HURRICANE KATRINA
19.3
EX POST
ANALYSIS USING THE IIM OF THE SEPTEMBER 11, 2001, ATTACK ON THE UNITED STATES
19.4 RISK MODELING, ASSESSMENT, AND MANAGEMENT OF LAHAR FLOW THREAT
19.5 THE STATISTICS OF EXTREME EVENTS AND 6-SIGMA CAPABILITY
19.6 SEQUENTIAL PARETO-OPTIMAL DECISIONS MADE DURING EMERGENT COMPLEX SYSTEMS OF SYSTEMS: AN APPLICATION TO THE FAA NEXTGEN
REFERENCES
Appendix: Optimization Techniques
A.1 INTRODUCTION TO MODELING AND OPTIMIZATION
A.2 BAYESIAN ANALYSIS AND THE PREDICTION OF CHEMICAL CARCINOGENICITY
A.3 THE FARMER’S DILEMMA: LINEAR MODEL AND DUALITY
A.4 STANDARD NORMAL PROBABILITY TABLE
REFERENCES
Author Index
Subject Index
Series page
End User License Agreement
Chapter 01
Table 1.1 Comparative Costs of Safety and Health Regulations
Chapter 04
Table 4.1 Profits as a Function of Sales Potential and Crutch Size
Table 4.2 Payoff Matrix ($1000)
Table 4.3 Summary of Information for the Hurwitz Rule
Table 4.4 Opportunity Loss Matrix
Table 4.5 Ranking of Restaurants according to Attributes
Table 4.6 Decision Matrix for Restaurant Selection
Table 4.7 Comparative CDFs
Table 4.8 Database for Exogenous Variables
Table 4.9 Scenario 1 Results (Population Growth)
Table 4.10 Scenario 2 Results (Water Consumption)
Table 4.11 Scenario 3 Results (New Livestock)
Table 4.12 Cost of Defective Part Returns
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
