Satellite and Terrestrial Hybrid Networks - Pascal Berthou - E-Book

Satellite and Terrestrial Hybrid Networks E-Book

Pascal Berthou

0,0
139,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book offers the reader the keys for a successful understanding, integration and usage of satellite systems in addition to next generation terrestrial networks. The DVB-S2/RCS system is used to illustrate the integration challenges. The presentation uses a system approach, i.e. it tackles the terrestrial and satellite telecommunication systems’ complexity with a high level approach, focusing on the systems’ components and on their interactions. Several scenarios present the different paths that can be followed for the integration of satellite systems in terrestrial networks. Quality of Service management techniques in terrestrial and satellite systems and the solutions to help them to interoperate are provided. Inter-system mobility solutions and performance problems are then addressed. The solutions proposed in this book have been developed within the framework of European and French funded research projects and tested with simulated or real testbeds.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 345

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title

Copyright

Acknowledgments

Foreword

List of Acronyms

Introduction

1: Satellite and Terrestrial Hybrid Networks

1.1. Designing satellite and terrestrial hybrid networks

1.2. Hybrid scenarios

1.3. Case study: loose coupling integration

1.4. Conclusion

2: Quality of Service on Nextgeneration Terrestrial Networks

2.1. IETF approach

2.2. ITU-NGN approach

2.3. Conclusion

3: Quality of Service in DVB-S/RCS Satellite Networks

3.1. Bi-directional satellite access systems

3.2. The DVB-S standard and the IP support

3.3. The DVB-S2 standard

3.4. The DVB-RCS standard

3.5. DVB-RCS2

3.6. QoS architecture in DVB-S/RCS satellite access networks

3.7. Conclusion

4: Integration of Satellites Into IMS QoS Architecture

4.1. IMS architecture

4.2. IMS QoS architecture

4.3. IMS QoS signaling

4.4. Inclusion of IMS QoS in the satellite segment

4.5. Toward a unified next-generation network (NGN) QoS architecture

4.6. SATSIX project

4.7. Conclusion

5: Inter-System Mobility

5.1. Introduction

5.2. The taxonomy of mobility

5.3. Protocols for mobility management

5.4. Implementation of mobility solutions in hybrid systems

5.5. SIP for mobility management and QoS for interactive applications

5.6. Evaluation of mobility solutions in a simulated DVB-S2/RCS architecture

5.7. Conclusion

6: The Transport Layer in Hybrid Networks

6.1. Introduction

6.2. Performance enhancing proxies

6.3. TCP evolutions

6.4. TCP performance in a geostationary network

6.5. TCP in a hybrid context

6.6. General conclusion

Conclusion

Bibliography

Index

End User License Agreement

List of Table

3: Quality of Service in Dvb-S/Rcs Satellite Networks

Table 3.1. Reasonable performance of a deployed DVB-RCS network

4: Integration of Satellites Into IMS QoS Architecture

Table 4.1. List and meaning of COPS messages

Table 4.2. List of messages defined in the DIAMETER protocol

Table 4.3. Suitability of IMS QoS procedures in a satellite context

5: Inter-System Mobility

Table 5.1. Evaluations regarding Mobile IPv6

Table 5.2. Evaluations regarding HMIPv6

Table 5.3. Evaluations regarding FMIPv6 in predictive mode

Table 5.4. Evaluations regarding FMIPv6 in reactive mode

Table 5.5. Evaluations regarding SIP mobility

6: The Transport Layer in Hybrid Networks

Table 6.1. Combination of different TCP versions (heterogeneous client/server)

Table 6.2. Impact of the MBB handover on TCP

List of Illustrations

1: Satellite and Terrestrial Hybrid Networks

Figure 1.1. Trends with 4G/NGN

Figure 1.2. Tight coupling architecture

Figure 1.3. LTE protocol stacks (User Plan – 3GPP standard documents)

Figure 1.4. LTE gateway architecture

Figure 1.5. LTE/satellite loose coupling integration

Figure 1.6. Heterogeneous hybrid architecture for mobile nodes

Figure 1.7. Heterogeneous hybrid architecture for mobile networks

Figure 1.8. Network coverage in the mobility scenario

2: Quality of Service on Nextgeneration Terrestrial Networks

Figure 2.1. Reservation of resources by RSVP protocol for an Intserv class stream

Figure 2.2. Overview of the DiffServ network

Figure 2.3. Logical structure of the classifier and traffic conditioners

Figure 2.4. Example of an MPLS domain

Figure 2.5. MPLS field

Figure 2.6. Diagram showing users, service providers and the SLAs negotiated

Figure 2.7. Basic SIP session

Figure 2.8. Initialization of an SIP session integrating the quality of service reservation as per [CAM 02]

Figure 2.9. Signaling protocol architecture

Figure 2.10. Signaling via heterogeneous NSLP applications

Figure 2.11. Traditional NSIS signaling processing

Figure 2.12. Flow chart of PCIM architecture

Figure 2.13. Policy control architecture

Figure 2.14. Various access networks to be integrated into NGNs by ITU (copyright ITU)

Figure 2.15. General architecture of NGNs according to ITU

3: Quality of Service in Dvb-S/Rcs Satellite Networks

Figure 3.1. Basic bi-directional satellite access infrastructure

Figure 3.2. Inter-ST communication with transparent and regenerative satellites

Figure 3.3. Regenerative multi-spots bi-directional satellite

Figure 3.4. MPEG2-TS multiplexing

Figure 3.5. Format of a MPEG2-TS packet

Figure 3.6. DVB protocol stack

Figure 3.7. Encapsulation of an IP datagram using MPE

Figure 3.8. ULE encapsulation

Figure 3.9. Set of ModCods available in DVB-S2 (source ETSI)

Figure 3.10. SNR and ModCod vs. time to noise

Figure 3.11. Diagram of IP encapsulation over DVB-S2 by GSE (source ETSI)

Figure 3.12. Composition of a DVB-RCS Superframe

Figure 3.13. DVB-S/RCS Protocol Architecture in the Data Plan

Figure 3.14. Protocol stack for RCS signaling on the forward channel

Figure 3.15. QoS architecture DVB-RCS SatLabs (source SatLabs)

Figure 3.16. The QoS groups supported by the STM SatLink 1000

Figure 3.17. QoS in the edge router and the gateway

Figure 3.18. BSM architecture

Figure 3.19. Overview of the BSM QoS architecture

Figure 3.20. Application and QoS framework

Figure 3.21. General approach to QoS architectures

Figure 3.22. Functional QoS architecture

Figure 3.23. BSM QoS architecture

4: Integration of Satellites Into IMS QoS Architecture

Figure 4.1. Simplified IMS reference architecture

Figure 4.2. IMS architecture

Figure 4.3. IMS UMTS QoS architecture

Figure 4.4. Example of an opening of an IMS session

Figure 4.5. PDP context in a GPRS UMTS network

Figure 4.6. Opening procedure of an IMS session in an xDSL network (source node side)

Figure 4.7. Opening procedure of an IMS session in an xDSL network (destination node side)

Figure 4.8. QoS resource authorization procedure in the source PDF

Figure 4.9. QoS resource authorization procedure in the destination PDF

Figure 4.10. Resource reservation procedure with a local service policy

Figure 4.11. Procedure for the approval of commitments of authorized resources

Figure 4.12. Procedure of revoking authorization initiated by a mobile or network node

Figure 4.13. Indication of PDP context deletion

Figure 4.14. Authorization procedure for the modification of the PDP context

Figure 4.15. Indication procedure for the modification of the PDP context

Figure 4.16. IMS architecture – satellite – transparent integration

Figure 4.17. IMS architecture – satellite – integrated star approach

Figure 4.18. IMS architecture – satellite – integrated mesh approach

Figure 4.19. IMS satellite architecture in scenario 1

Figure 4.20. General implementation of QoS fo transparent integration

Figure 4.21. General implementation of QoS with C2P at the level of the NCC for transparent integration

Figure 4.22. General implementation of the QoS with C2P at the level of the ST for transparent integration

Figure 4.23. IMS satellite architecture in scenario 2

Figure 4.24. General implementation of QoS for the star integration

Figure 4.25. IMS satellite architecture in scenario 3

Figure 4.26. General implementation of QoS for mesh integration

Figure 4.27. General implementation of QoS for meshed integration with C2P

Figure 4.28. Access-oriented SATSIX architecture (mesh case)

Figure 4.29. SATSIX IP-oriented architecture (star case)

Figure 4.30. BSM QoS architecture

5: Inter-System Mobility

Figure 5.1. Example of personal mobility

Figure 5.2. IETF mobility terminology

Figure 5.3. Implementation of the bidirectional tunnel in the Mobile IPv6 a) direct communication, b) binding update with the HA and c) communication in bidirectional tunnel mode

Figure 5.4. Routing optimization procedure in Mobile IPv6: a) procedure for the return routability test; b) binding update with the CN and c) direct communication with specific routing options

Figure 5.5. FMIPv6 architecture

Figure 5.6. FMIPv6 in predictive mode

Figure 5.7. FMIPv6 in reactive mode

Figure 5.8. HMIPv6 architecture

Figure 5.9. Mobility management by HMIPv6

Figure 5.10. PMIPv6 architecture

Figure 5.11. Entry of an MN in a PMIPv6 domain and hand-over procedure

Figure 5.12. SIP management of nomadic mobility

Figure 5.13. SIP management by continuous mobility

Figure 5.14. Registrations initiated by the MN

Figure 5.15. Registrations initiated by the home SIP proxy

Figure 5.16. Registrations initiated by the local SIP proxy

Figure 5.17. Solution chosen for the SIP reregistration of an MN

Figure 5.18. Reinitiation of SIP session according to [RFC 3312]

Figure 5.19. Solution chosen for the reinitiation of the SIP session

Figure 5.20. The main types of movement in a satellite system

Figure 5.21. Interruption times registered by the MN as a receiver

Figure 5.22. Interruption time registered by the MN as emitter

6: The Transport Layer in Hybrid Networks

Figure 6.1. General view of I-PEP [ETS 09d]

Figure 6.2. Basic I-PEP components [ETS 09d]

Figure 6.3. I-PEP protocol integration scenarios [ETS 09d]

Figure 6.4. Request/reply delay of a ping over a real satellite connection – OURSES platform

Figure 6.5. Sequence number, transfer rate and RTT over a 512 Kbps connection. For a color version of the figure, see www.iste.co.uk/berthou/networks.zip

Figure 6.6. Sequence number and the use of bandwidth over a 2 Mbps connection. For a color version of the figure, see www.iste.co.uk/berthou/networks.zip

Figure 6.7. Evolution in sequence numbers, transfer rates and RTTs during a handover. For a color version of the figure, see www.iste.co.uk/berthou/networks.zip

Guide

Cover

Table of Contents

Begin Reading

Pages

cover

contents

iii

iv

ix

x

xi

xii

xiii

xiv

xv

xvi

xvii

xviii

xix

xx

xxi

xiii

xxiv

xxv

xxvi

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

223

224

225

226

227

228

229

230

231

232

233

234

235

237

238

239

240

241

242

Satellite and Terrestrial Hybrid Networks

Pascal Berthou

Cédric Baudoin

Thierry Gayraud

Matthieu Gineste

Michel Diaz

First published 2015 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd27-37 St George’s RoadLondon SW19 4EUUK

www.iste.co.uk

John Wiley & Sons, Inc.111 River StreetHoboken, NJ 07030USA

www.wiley.com

© ISTE Ltd 2015

The rights of Pascal Berthou, Michel Diaz, Thierry Gayraud and Cédric Baudoin to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2015944962

British Library Cataloguing-in-Publication DataA CIP record for this book is available from the British LibraryISBN 978-1-84821-541-2

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!