Science of Synthesis Knowledge Updates 2011 Vol. 1 -  - E-Book

Science of Synthesis Knowledge Updates 2011 Vol. 1 E-Book

0,0
2.799,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Content of this volume: Dialkyl- and Diarylmagnesiums, 1H- and 2H-Indazoles, Quinolizinium Salts and Benzo Analogues, 1,2-Diselenins, 1,4-Diselenins, Pyrimidines, Acyclic Dialkyl Selenoxides and Derivatives.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 1135

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

Methods critically evaluated by leading scientists

Background information and detailed experimental procedures

Schemes and tables which illustrate the reaction scope

Preface

As the pace and breadth of research intensifies, organic synthesis is playing an increasingly central role in the discovery process within all imaginable areas of science: from pharmaceuticals, agrochemicals, and materials science to areas of biology and physics, the most impactful investigations are becoming more and more molecular. As an enabling science, synthetic organic chemistry is uniquely poised to provide access to compounds with exciting and valuable new properties. Organic molecules of extreme complexity can, given expert knowledge, be prepared with exquisite efficiency and selectivity, allowing virtually any phenomenon to be probed at levels never before imagined. With ready access to materials of remarkable structural diversity, critical studies can be conducted that reveal the intimate workings of chemical, biological, or physical processes with stunning detail.

The sheer variety of chemical structural space required for these investigations and the design elements necessary to assemble molecular targets of increasing intricacy place extraordinary demands on the individual synthetic methods used. They must be robust and provide reliably high yields on both small and large scales, have broad applicability, and exhibit high selectivity. Increasingly, synthetic approaches to organic molecules must take into account environmental sustainability. Thus, atom economy and the overall environmental impact of the transformations are taking on increased importance.

The need to provide a dependable source of information on evaluated synthetic methods in organic chemistry embracing these characteristics was first acknowledged over 100 years ago, when the highly regarded reference source Houben–Weyl Methoden der Organischen Chemie was first introduced. Recognizing the necessity to provide a modernized, comprehensive, and critical assessment of synthetic organic chemistry, in 2000 Thieme launched Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. This effort, assembled by almost 1000 leading experts from both industry and academia, provides a balanced and critical analysis of the entire literature from the early 1800s until the year of publication. The accompanying online version of Science of Synthesis provides text, structure, substructure, and reaction searching capabilities by a powerful, yet easy-to-use, intuitive interface.

From 2010 onward, Science of Synthesis is being updated quarterly with high-quality content via Science of Synthesis Knowledge Updates. The goal of the Science of Synthesis Knowledge Updates is to provide a continuous review of the field of synthetic organic chemistry, with an eye toward evaluating and analyzing significant new developments in synthetic methods. A list of stringent criteria for inclusion of each synthetic transformation ensures that only the best and most reliable synthetic methods are incorporated. These efforts guarantee that Science of Synthesis will continue to be the most up-to-date electronic database available for the documentation of validated synthetic methods.

Also from 2010, Science of Synthesis includes the Science of Synthesis Reference Library, comprising volumes covering special topics of organic chemistry in a modular fashion, with six main classifications: (1) Classical, (2) Advances, (3) Transformations, (4) Applications, (5) Structures, and (6) Techniques. Titles will include Stereoselective Synthesis, Water in Organic Synthesis, and Asymmetric Organocatalysis, among others. With expertevaluated content focusing on subjects of particular current interest, the Science of Synthesis Reference Library complements the Science of Synthesis Knowledge Updates, to make Science of Synthesis the complete information source for the modern synthetic chemist.

The overarching goal of the Science of Synthesis Editorial Board is to make the suite of Science of Synthesis resources the first and foremost focal point for critically evaluated information on chemical transformations for those individuals involved in the design and construction of organic molecules.

Throughout the years, the chemical community has benefited tremendously from the outstanding contribution of hundreds of highly dedicated expert authors who have devoted their energies and intellectual capital to these projects. We thank all of these individuals for the heroic efforts they have made throughout the entire publication process to make Science of Synthesis a reference work of the highest integrity and quality.

July 2010

The Editorial Board

E. M. Carreira (Zurich, Switzerland)

C. P. Decicco (Princeton, USA)

A. Fuerstner (Muelheim, Germany)

G. A. Molander (Philadelphia, USA)

P. J. Reider (Princeton, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany)

M. Shibasaki (Tokyo, Japan)

E. J. Thomas (Manchester, UK)

B. M. Trost (Stanford, USA)

Abstracts

7.6.15 Product Subclass 15: Dialkyl- and Diarylmagnesiums

L. Yang and C.-J. Li

This manuscript is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of dialkyl- and diarylmagnesiums and their applications in organic synthesis.

Keywords: alkyl halides · Grignard reagents · magnesium compounds · nucleophilic addition · nucleophilic substitution

12.2.5 1H- and 2H-Indazoles

K. Sapeta and M. A. Kerr

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1H- and 2H-indazoles, and related compounds such as 1H-indazol-3(2H)-ones, with emphasis on the literature published in the period 2001–2010. Classic methods toward indazoles involve the condensation/cyclization of hydrazines with 2-acyl- or 2-alkylhaloarenes. New methods and improvements to existing approaches are also discussed, examples of which include cycloadditions of benzyne and diazo compounds, and transition-metal-catalyzed intramolecular aminations.

Keywords: indazoles · indazol-3-ones · amination · benzyne · condensation · cross coupling · cyclization · dipolar cycloaddition

15.7.5 Quinolizinium Salts and Benzo Analogues

H. Ihmels

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of quinolizinium ions and benzannulated analogues. It focuses on the literature published in the period 2002–2010.

Keywords: arenes · cyclization · cyclodehydration · metathesis · nitrogen heterocycles · nucleophilic aromatic substitution · palladium-catalyzed coupling · quaternary salts · Stille coupling · Suzuki coupling

16.5.2 1,2-Diselenins

T. J. Hagen

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2-diselenins. The synthesis of various 1,2-diselenin species by ring closure through the formation of one Se—Se and two Se—C bonds is reported.

Keywords: 2,3-benzodiselenins · cyclization · 1,2-diselenins · hetarene synthesis · ring-closure reactions · selenation

16.6.4 1,4-Diselenins

T. J. Hagen

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,4-diselenins. The synthesis of various 1,4-diselenin species by ring closure through the formation of two Se—C bonds is reported.

Keywords: cyclization · 1,4-diselenins · hetarene synthesis · photolysis · ring-closure reactions · selanthrenes · thermolysis

16.12 Product Class 12: Pyrimidines

S. von Angerer

This section provides a detailed review of the methods available for the synthesis of pyrimidines. The pyrimidine ring is an essential component of all forms of life, and is also present in many biologically active substances, therapeutic agents, and pesticides. The synthetic methods for the formation of this important hetarene discussed in this review include the many available ring-closing approaches, syntheses from other ring systems, and also methods involving the introduction of new substituents into pyrimidines and the modification of existing substituents.

Keywords: pyrimidines · pyrimidinones · pyrimidinethiones · pyrimidinamines · uracil · cytosine · cyclization · condensation · aromatization · ring functionalization

39.17.3 Acyclic Dialkyl Selenoxides and Derivatives

T. Shimizu

Dialkylselenium dihalides can be converted into the corresponding selenoxides, as shown in Section 39.17.2.1.2. Some other reactions of dialkylselenium dihalides, such as transformation into dialkylselenium diazides, dehalogenation to selenides, migration of halogens, and addition to cyclic ethers with ring opening of the ether, have also been reported. Dialkylselenium dihalides are also used as reagents in the reduction of amides and nitriles, in the halogenation of alcohols, and as selenation agents. In this update, utilization of dialkylselenium dihalides as reagents and some transformations of acyclic dialkylselenium dihalides are described.

Keywords: dialkylselenium dihalide · dihaloselenurane · reduction · halogenation · selenation

Science of Synthesis Knowledge Updates 2011/1

Preface

Abstracts

Table of Contents

7.6.15 Product Subclass 15: Dialkyl- and Diarylmagnesiums

L. Yang and C.-J. Li

12.2.5 1H- and 2H-Indazoles (Update 2011)

K. Sapeta and M. A. Kerr

15.7.5 Quinolizinium Salts and Benzo Analogues (Update 2011)

H. Ihmels

16.5.2 1,2-Diselenins (Update 2011)

T. J. Hagen

16.6.4 1,4-Diselenins (Update 2011)

T. J. Hagen

16.12 Product Class 12: Pyrimidines

S. von Angerer

39.17.3 Acyclic Dialkyl Selenoxides and Derivatives (Update 2011)

T. Shimizu

Author Index

Abbreviations

Table of Contents

Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be … Ba)

7.6 Product Class 6: Magnesium Compounds

7.6.15 Product Subclass 15: Dialkyl- and Diarylmagnesiums

L. Yang and C.-J. Li

7.6.15 Product Subclass 15: Dialkyl- and Diarylmagnesiums

Synthesis of Product Subclass 15

7.6.15.1 Method 1: Disproportion of Grignard Reagents

7.6.15.1.1 Variation 1: Reaction of Magnesium Metal with 2-Chlorobutane

7.6.15.2 Method 2: Reaction of Grignard Reagents with Organolithium Reagents

7.6.15.2.1 Variation 1: Reaction of Activated Magnesium Halides with Organolithium Reagents

7.6.15.3 Method 3: Reaction of Diorganomercury(II) Compounds with Magnesium Metal

7.6.15.4 Method 4: Reaction of Alkenes and Activated Magnesium Hydride

7.6.15.5 Method 5: Reaction of 1,3-Dienes with Activated Magnesium Metal

Applications of Product Subclass 15 in Organic Synthesis

7.6.15.6 Method 6: Reactions of Organomagnesium Compounds

7.6.15.7 Method 7: Reactions Involving Diorganomagnesium Compounds Obtained from 1,3-Dienes

7.6.15.8 Method 8: Catalysts Derived from Diorganomagnesium Compounds

7.6.15.9 Method 9: Miscellaneous Reactions of Diorganomagnesium Compounds

Volume 12: Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

12.2 Product Class 2: 1H- and 2H-Indazoles

12.2.5 1H- and 2H-Indazoles

K. Sapeta and M. A. Kerr

12.2.5 1H- and 2H-Indazoles

12.2.5.1 Synthesis by Ring-Closure Reactions

12.2.5.1.1 By Annulation to an Arene

12.2.5.1.1.1 By Formation of One N—N and One N—C Bond

12.2.5.1.1.1.1 Fragments N—Arene—C and N

12.2.5.1.1.1.1.1 Method 1: From 2-Alkylanilines by Diazotization or Nitrosation

12.2.5.1.1.1.1.2 Method 2: From 2-Acylnitroarenes

12.2.5.1.1.2 By Formation of Two N—C Bonds

12.2.5.1.1.2.1 Fragment Arene—C and N—N

12.2.5.1.1.2.1.1 Method 1: From 1-Acyl-2-haloarenes and Hydrazine

12.2.5.1.1.2.1.2 Method 2: From 1-Alkyl-2-haloarenes and Hydrazines

12.2.5.1.1.2.1.3 Method 3: From 2-Arylidenecyclohexanones and Hydrazines

12.2.5.1.1.2.1.4 Method 4: From 2-Acylcyclohexanones and Hydrazine

12.2.5.1.1.2.1.5 Method 5: From 2-Acylhydroxyarenes and Hydrazine

12.2.5.1.1.2.1.6 Method 6: From [2-(Halomethyl)aryl]zincs and Arenediazonium Salts

12.2.5.1.1.2.2 Fragments Arene and N—N—C

12.2.5.1.1.2.2.1 Method 1: From Benzyne and Diazo Compounds

12.2.5.1.1.2.2.1.1 Variation 1: Using Acyl Diazomethanes

12.2.5.1.1.2.2.1.2 Variation 2: Using (Trimethylsilyl)diazomethane

12.2.5.1.1.2.2.1.3 Variation 3: Using Sydnones

12.2.5.1.1.2.2.1.4 Variation 4: Using Azomethine Imides

12.2.5.1.1.2.2.2 Method 2: From Quinones and Arylhydrazones

12.2.5.1.1.2.2.3 Method 3: From Nitroarenes or Nitroalkenes and Hydrazones

12.2.5.1.1.3 By Formation of One N—C and One C—C Bond

12.2.5.1.1.3.1 Fragments N—N—Arene and C

12.2.5.1.1.3.1.1 Method 1: From Arylhydrazines and Acyl Derivatives

12.2.5.1.1.3.1.2 Method 2: From Arylhydrazones

12.2.5.1.1.3.1.3 Method 3: By Carbonylation

12.2.5.1.1.4 By Formation of One N—N Bond

12.2.5.1.1.4.1 Fragment N–Arene–C—N

12.2.5.1.1.4.1.1 Method 1: From 2-Acylamino- or 2-Acylazidoarenes

12.2.5.1.1.4.1.1.1 Variation 1: Using Oximes

12.2.5.1.1.4.1.1.2 Variation 2: From 2-Amino- and 2-Azidobenzamides

12.2.5.1.1.4.1.2 Method 2: From 1-Acyl-2-nitroarenes

12.2.5.1.1.4.1.2.1 Variation 1: From 2-Nitroiminoarenes

12.2.5.1.1.4.1.2.2 Variation 2: From 2-Nitrobenzamides

12.2.5.1.1.4.1.3 Method 3: From 1-(Aminomethyl)-2-nitroarenes

12.2.5.1.1.5 By Formation of One N—C Bond

12.2.5.1.1.5.1 Fragment N—N—Arene—C

12.2.5.1.1.5.1.1 Method 1: From (2-Alkynylphenyl)triazenes

12.2.5.1.1.5.1.2 Method 2: From Azoarenes

12.2.5.1.1.5.1.2.1 Variation 1: From 2-Diazenylbenzonitriles or (2-Ethynylphenyl)diazenes

12.2.5.1.1.5.1.2.2 Variation 2: From 2-Acyl-1-diazenylarenes or 2-(Phenyldiazenyl)benzhydrols

12.2.5.1.1.5.1.3 Method 3: From 2-Hydrazinobenzonitriles

12.2.5.1.1.5.2 Fragment N—N—C—Arene

12.2.5.1.1.5.2.1 Method 1: From (2-Halobenzyl)hydrazines and 2-Halobenzohydrazides

12.2.5.1.1.5.2.2 Method 2: From (2-Halobenzylidene)hydrazines

12.2.5.1.1.5.2.3 Method 3: From (2-Nitrobenzylidene)hydrazines

12.2.5.1.1.5.2.4 Method 4: From Benzophenone Hydrazones

12.2.5.1.1.6 By Formation of One C—C Bond

12.2.5.1.1.6.1 Fragment Arene—N—N—C

12.2.5.1.1.6.1.1 Method 1: From 2-Alkylidenehydrazinoarenes

12.2.5.1.2 By Annulation to the Heterocyclic Ring

12.2.5.1.2.1 By Formation of Two C—C Bonds

12.2.5.1.2.1.1 Fragments Pyrazole—C—C and C—C

12.2.5.1.2.1.1.1 Method 1: From 4-Styrylpyrazoles and Dienophiles

12.2.5.1.2.1.2 Fragments C—Pyrazole—C and C—C

12.2.5.1.2.1.2.1 Method 1: From Dihydropyrazol-3-ones and Dienophiles

12.2.5.1.2.1.2.2 Method 2: From Pyrazole-4,5-quinodimethane and Dienophiles

12.2.5.1.2.1.3 Fragments C—Pyrazole and C—C—C

12.2.5.1.2.1.3.1 Method 1: From 5-(Cyanomethyl)pyrazoles and α-Oxoketene Dithioacetals

12.2.5.1.2.2 By Formation of One C—C Bond

12.2.5.1.2.2.1 Fragment C—C—Pyrazole—C—C

12.2.5.1.2.2.1.1 Method 1: From 5-Phenyl-4-styryl-1H-pyrazoles or 1-(5-Phenyl-1H-pyrazol-4-yl)-2-phenylethanol

12.2.5.1.2.2.1.2 Method 2: From 3,4-Diethynyl-1H-pyrazoles

12.2.5.1.3 From Acyclic Reactants

12.2.5.1.3.1 Method 1: From Alkenylethynyl Carbenes

12.2.5.2 Synthesis By Ring Transformation

12.2.5.2.1 Formal Exchange of Ring Members with Retention of Ring Size

12.2.5.2.1.1 Method 1: Of a Five-Membered Heterocycle

12.2.5.2.2 Ring Contraction

12.2.5.2.2.1 Method 1: Of a Six-Membered Heterocycle

12.2.5.2.2.2 Method 2: Of a Seven-Membered Heterocycle

12.2.5.2.2.3 Method 3: Of a Seven-Membered Carbocycle

12.2.5.3 Aromatization

12.2.5.3.1 Method 1: Of a Six-Membered Carbocycle

12.2.5.4 Synthesis By Substituent Modification

12.2.5.4.1 Addition Reactions

12.2.5.4.1.1 Addition of Organic Groups

12.2.5.4.1.1.1 Method 1: Addition of Alkyl Groups

12.2.5.4.1.1.2 Method 2: Addition of a Ring System to the Heterocyclic Ring

12.2.5.4.1.2 Addition of Heteroatoms

12.2.5.4.1.2.1 Method 1: By Oxidation

12.2.5.4.1.2.2 Method 2: Reduction of the Heterocyclic Ring

12.2.5.4.2 Substitution of Existing Substituents

12.2.5.4.2.1 Of Hydrogen

12.2.5.4.2.1.1 Method 1: Metalation

12.2.5.4.2.1.1.1 Variation 1: Lithiation

12.2.5.4.2.1.1.2 Variation 2: Metalation by Transition Metals

12.2.5.4.2.1.2 Method 2: Halogenation

12.2.5.4.2.1.3 Method 3: Alkoxylation

12.2.5.4.2.1.4 Method 4: Alkylation

12.2.5.4.2.1.5 Method 5: Arylation

12.2.5.4.2.1.6 Method 6: Acylation

12.2.5.4.2.2 Of Heteroatoms

12.2.5.4.2.2.1 Method 1: Halogen–Metal Exchange

12.2.5.4.2.2.2 Method 2: Cross-Coupling Reactions of Haloindazoles

12.2.5.4.2.2.3 Method 3: Removal or Exchange of Silyl Groups

12.2.5.4.2.2.4 Method 4: Removal or Exchange of Alkoxy Groups

12.2.5.4.2.2.5 Method 5: Removal or Exchange of Amino or Nitro Groups

12.2.5.4.2.3 Of Carbon Functionalities

12.2.5.4.2.3.1 Method 1: Deacylation

12.2.5.4.2.3.2 Method 2: Decarboxylation

12.2.5.4.2.4 Modification of Substituents

12.2.5.4.2.4.1 Method 1: Modification of Carbonyl Groups

12.2.5.4.2.4.2 Method 2: Modification of Hydroxy Groups

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!