Solid-Phase Organic Syntheses, Volume 2 -  - E-Book

Solid-Phase Organic Syntheses, Volume 2 E-Book

0,0
144,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Integrates solid-phase organic synthesis with palladium chemistry The Wiley Series on Solid-Phase Organic Syntheses keeps researchers current with major accomplishments in solid-phase organic synthesis, providing full experimental details. Following the validated, tested, and proven experimental procedures, readers can easily perform a broad range of complex syntheses needed for their own experiments and industrial applications. The series is conveniently organized into themed volumes according to the specific type of synthesis. This second volume in the series focuses on palladium chemistry in solid-phase synthesis, exploring palladium catalysts and reactions, procedures for preparation and utilization, ligands, and linker reactions. The first part of the volume offers a comprehensive overview of the field. Next, the chapters are organized into three parts: * Part Two: Palladium-Mediated Solid-Phase Organic Syntheses * Part Three: Immobilized Catalysts and Ligands * Part Four: Palladium-Mediated Multifunctional Cleavage Each chapter is written by one or more leading international experts in palladium chemistry. Their contributions reflect a thorough examination and review of the current literature as well as their own first-hand laboratory experience. References at the end of each chapter serve as a gateway to the field's literature. The introduction of palladium-mediated, cross-coupling reactions more than thirty years ago revolutionized the science of carbon-carbon bond formation. It has now become a cornerstone of today's synthetic organic chemistry laboratory. With this volume, researchers in organic and medicinal chemistry have access to a single resource that explains the fundamentals of palladium chemistry in solid-phase synthesis and sets forth clear, step-by-step instructions for conducting their own syntheses.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 238

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Solid-Phase Organic Syntheses

Title Page

Copyright

Contributors

Preface

Abbreviations

Part I: Introduction

Chapter 1: An Introduction to Solid-Phase Palladium Chemistry

1 Introduction

2 Palladium-Catalyzed Reactions

3 Polymer-Supported Reagents and Catalysts

4 Palladium Cleavage

5 Conclusion

References

Part II: Palladium-Mediated SPOS

Chapter 2: P-Catalyzed Solid-Phase Decoration of the 2(1H)-Pyrazinone Scaffold

1 Procedure

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 3: One-Step Palladium- and Phenylsilane-Activated Amidation of Solid-Supported Ally Esters

1 Procedure

2 Discussion

References

Chapter 4: Solid-Phase Reactions of Polymer-Bound Arenesulfonates with Aryl Grignard Reagents

1 Procedure

2 Discussion

Waste Disposal Information

Appendix

References

Chapter 5: Fluorous Synthesis of 3-Aminoimidazo[1,2-a]-Pyridine/Pyrazine Library

1 Procedure

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 6: Resin-to-Resin Transfer Reactions (RRTR) Via Sonogashira Coupling

1 Procedures

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Part III: Immobilized Catalysts and Ligands

Chapter 7: Polymer-Supported Palladium Catalysts for Suzuki and Heck Reactions

1 Procedure

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 8: Solid-Phase Catalytic Activity of a Polymer-Supported Palladium Complex

1 Procedure

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 9: Polyaniline-Immobilized Palladium for Suzuki-Miyaura Coupling Reaction in Water

1 Procedures

2 Discussion

Waste Disposal Information

References

Chapter 10: Synthesis of Polymer-Supported Aryldicyclohexylphosphine for an Efficient Recycling in Suzuki-Miyaura Reaction

1 Procedure

2 Discussion

Waste Disposal Information

References

Chapter 11: C–C or C–N Reactions Catalyzed by Diadamanthylphosphine Palladium-Based Catalyst Supported on DAB-Dendrimers

1 Procedure

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Part IV: Palladium-Mediated Multifunctional Cleavage

Chapter 12: Solid-Phase Reactions of Resin-Supported Boronic Acids

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 13: A Simple Diversity Linker Strategy Using Immobilized ENOL Phosphonates as Electrophiles for Suzuki-Miyaura Reactions

1 Procedures

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 14: Heck Cleavage of Resin-Bound Triazenes

1 Procedure

2 Discussion

Waste Disposal Information

References

Chapter 15: Pd-Mediated Cleavage from Tetrafluoroarylsulfonate Linker Units

1 Procedures

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Chapter 16: Palladium-Catalyzed Solid-Phase Synthesis of Allylic Amines

1 Procedures

2 Discussion

Waste Disposal Information

Appendix Experimental Supplement

References

Chapter 17: Palladium-Catalyzed Solid-Phase Synthesis of 4-Methylene Pyrrolidines

1 Procedures

2 Discussion

Waste Disposal Information

Appendix: Experimental Supplement

References

Index

Solid-Phase Organic Syntheses

Editor-in-Chief

Prof. Peter J. H. Scott

University of Michigan, Ann Arbor, MI, USA

Editorial Advisory Board

Prof. George Barany

University of Minnesota, Minneapolis, MN, USA

Prof. Dr. Stefan Bräse

Institute of Organic Chemistry, Karlsruhe, Germany

Prof. Richard C. D. Brown

University of Southampton, Southampton, UK

Prof. Anthony W. Czarnik

University of Nevada, Reno, NV, USA

Dr. Scott L. Dax

Galleon Pharmaceuticals, Horsham, PA, USA

Prof. Ryszard Lazny

University of Bialystok, Bialystok, Poland

Prof. K. C. Nicolaou

The Scripps Research Institute, La Jolla, CA, USA

Dr. Marcel Pátek

Sanofi-Avenits, Tuscon, AZ, USA

Prof. Alan C. Spivey

Imperial College, London, UK

Dr. Patrick G. Steel, Ph.D

University of Durham, Durham, UK

Prof. Patrick H. Toy

University of Hong Kong, Hong Kong, People's Republic of China

Copyright 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Solid-phase palladium chemistry / edited by Peter J. H. Scott.

p. cm. – (Wiley series on solid-phase organic syntheses ; 2)

Includes bibliographical references and index.

ISBN 978-0-470-56665-7 (hardback)

1. Organopalladium compounds. 2.Organic compounds—Synthesis. 3. Solid-phase synthesis. I. Scott, Peter J. H.

QD412.P4S65 2012

547′.056362–dc23

2011053468

Contributors

Fernando Albericio

Chemistry and Molecular Pharmacology Programme, Institute for Research in Biomedicine, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park–Barcelona, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain

George Barany

Department of Chemistry, University of Minnesota, Minneapolis, MN

Stefan Bräse

Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany

Richard C. D. Brown

The School of Chemistry, The University of Southampton, Highfield, Southampton, UK

Lynda J. Brown

The School of Chemistry, The University of Southampton, Highfield, Southampton, UK

Andrew N. Cammidge

School of Chemistry, University of East Anglia, Norwich, UK

Bertrand Carboni

Institut des Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France

François Carreaux

Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Rennes, France

Chul-Hee Cho

School of Chemical Engineering and Materials Science, Chung-Ang University, Dongjak-Gu, Seoul, South Korea

Chirstopher B. Cooper

Department of Early Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ

Herve Deleuze

UMR 5255 “Institut des Sciences Moléculaires,” Université de Bordeaux, Talence, France

Maria M. Dell'Anna

Dipartimento d'Ingegneria delle Acque e di Chimica del Politecnico di Bari, Bari, Italy

Martin L. Fisher

The School of Chemistry, The University of Southampton, Highfield, Southampton, UK

Agnés Fougeret

Groupe Matériaux, Université de Bordeaux 1/CNRS, Talence, France

Eric Framery

Université Lyon 1, ICBMS UMR-CNRS 5246, Villeurbanne, France

Carmen Gil

Instituto de Química Médica, Madrid, Spain

Katarzyna Glegola

Université Claude Bernard Lyon 1, ICBMS, UMR-CNRS 5246, Equipe Catalyse Synthèse et Environnement, Villeurbanne, France

Karine Heuzé

Groupe Matériaux, Université de Bordeaux 1/CNRS, Talence, France

Nicole Jung

Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany

M. Lakshmi Kantam

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India

R. Michael Lawrence

Department of Early Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ

Julietta Lemo

Groupe Matériaux, Université de Bordeaux 1/CNRS, Talence, France

Pravin R. Likhar

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India

Yimin Lu

Discovery Chemistry, Fluorous Technologies, Inc., Pittsburgh, PA

Rita S. Majerle

Department of Chemistry, University of Minnesota, Minneapolis, MN;

Department of Chemistry, Hamline University, St. Paul, MN

Piero Mastrorilli

Dipartimento d'Ingegneria delle Acque e di Chimica del Politecnico di Bari, Bari, Italy

Vaibhav P. Mehta

Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan, Leuven, Belgium

Zainab Ngaini

School of Chemistry, University of East Anglia, Norwich, UK

Cosimo F. Nobile

Dipartimento d'Ingegneria delle Acque e di Chimica del Politecnico di Bari, Bari, Italy

Kwangyong Park

School of Chemical Engineering and Materials Science, Chung-Ang University, Dongjak-Gu, Seoul, South Korea

Michael Poss

Department of Early Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ

Christelle Pourbaix-L'Ebraly

Galapagos, Romainville, France

Daniel Rosario-Amorin

Groupe Matériaux, Université de Bordeaux 1/CNRS, Talence, France

Moumita Roy

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India

Zheming Ruan

Department of Early Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ

Peter Styring

Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK

Judit Tulla-Puche

Department of Chemistry, University of Minnesota, Minneapolis, MN;

Institute for Research in Biomedicine, Barcelona, Spain

Erik V. van der Eycken

LOMAC, Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, Leuven, Belgium

Katy van Kirk

Department of Early Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ

Sylvia Vanderheiden

Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany

Tom M. Woods

School of Chemical Sciences, The University of Auckland, Auckland, New Zealand

Wei Zhang

Department of Chemistry, University of Massachusetts Boston, Boston, MA

Preface

When I had the privilege of taking over as the Editor-in-Chief of Solid-phase Organic Syntheses from Anthony Czarnik in 2009, I chose to introduce themed volumes into the series to showcase the elegant solid-phase organic synthesis (SPOS) that has been developed in the last few decades. After completing doctoral studies in solid-phase palladium chemistry with Dr. Patrick Steel at the University of Durham, this area seemed like the natural starting point for continuation of the series. Every organic chemist is aware of, and thankful for, the development of the palladium-mediated cross-coupling reactions. Since their introduction in the late seventies and early eighties, it is fair to say that they have revolutionized the science of carbon–carbon bond formation and become a workhorse in the modern synthetic organic chemistry laboratory. Thus it seems fitting that the release of this volume coincides with the recognition of palladium chemistry and Professors Heck, Negishi, and Suzuki by the Nobel Foundation (http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/).

Solid-Phase Organic Syntheses, Volume 2: Solid-Phase Palladium Chemistry initially provides an overview of solid-phase palladium chemistry by Carmen Gil (Instituto de Química Médica, Spain), showcasing the synergistic effect of combining Nobel Prize winning SPOS with Nobel Prize winning palladium chemistry. The remainder of the volume is then divided into three sections offering highlights from the field through a series of monographs covering palladium reactions on solid phase (Part 2), supported ligands and catalysts for palladium chemistry (Part 3), and the use of palladium chemistry as a multifunctional cleavage strategy (Part 4).

I am deeply indebted to the authors and editorial board that have made Volume 2 a reality. These experts in both SPOS and palladium chemistry have responded to this volume with endless enthusiasm, whether by preparing the monographs found herein, or through their careful reviewing of the reported synthetic procedures. Thanks are also due to Tony for entrusting me with the series, and Jonathan Rose at Wiley who has enthusiastically backed this project from the start and patiently seen it through to publication. I also appreciate the support and encouragement of all my family, and particularly my wife Nicole, who tolerates all the early mornings, late nights, and weekends spent in my office, which are essential for bringing such projects to fruition. I would like to dedicate this book to my grandmother, Ena, who passed away in 2011 before publication was complete.

Finally, SPOS Volume 3 will focus on microwave-enhanced solid-phase synthesis and will be published in due course. Potential authors, as well as guest volume editors, are encouraged to submit proposals for monographs and/or future volumes to the Editor ([email protected]).

Peter J. H. Scott, Ph.D

The University of Michigan

Ann Arbor, Michigan

October 2011

Abbreviations

AAEMA

2-(Acetoacetoxy)ethylmethacrylate

acac

Acetylacetonate

ACN

Acetonitrile

AcOH

Acetic acid

AIBN

Azobisisobutyronitrile

Ar

Aryl

Boc

tert

-Butyloxycarbonyl

Bu

Butyl

BuLi

Butyl lithium

dba

Dibenzylideneacetone

DCM

Dichloromethane

DEAD

Diethyl azodicarboxylate

DIAD

Diisopropyl azodicarboxylate

DIC

N,N

′-Diisopropylcarbodiimide

DIEA

Diisopropylethylamine

DMAP

4-Dimethylaminopyridine

DME

Dimethoxyethane

DMF

N,N

-Dimethylformamide

dppe

1,2-Bis(diphenylphosphino)ethane

dppf

1,1′-Bis(diphenylphosphino)ferrocene

dppp

1,3-Bis(diphenylphosphino)propane

E+

Electrophile

equiv.

Equivalents

Et

Ethyl

EtOAc

Ethyl acetate

EtOH

Ethanol

GC

Gas chromatography

GC-MS

Gas chromatography–mass spectrometry

ICP-AES

Inductively coupled plasma atomic emission spectroscopy

i

Pr

iso

-Propyl

LC-MS

Liquid chromatography–mass spectrometry

LDA

Lithium diisopropylamide

m

CPBA

m

-Chloroperbenzoic acid

Me

Methyl

MeOH

Methanol

MW

Microwave

NMR

Nuclear magnetic resonance

OAc

Acetate

PA-Pd

Polyaniline-palladium

PANI

Polyaniline

PEG

Polyethylene glycol

Ph

Phenyl

PS

Polystyrene

PTSA

p

-Toluenesulfonic acid

R

Alkyl

rt

Room temperature

SPOS

Solid-phase organic synthesis

t

Bu

tert

-Butyl

TC

Thiophene-2-carboxylate

TEA

Triethylamine

TES

Triethyl silane

TFA

Trifluoroacetic acid

THF

Tetrahydrofuran

TLC

Thin layer chromatography

TMEDA

Tetramethylethylenediamine

TMOF

Trimethyl orthoformate

TMS

Tetramethyl silyl

TMSOK

Potassium trimethylsilanolate

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!