Surface Chemistry of Surfactants and Polymers - Bengt Kronberg - E-Book

Surface Chemistry of Surfactants and Polymers E-Book

Bengt Kronberg

4,7
89,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

This book gives the reader an introduction to the field of surfactants in solution as well as polymers in solution. Starting with an introduction to surfactants the book then discusses their environmental and health aspects. Chapter 3 looks at fundamental forces in surface and colloid chemistry. Chapter 4 covers self-assembly and 5 phase diagrams. Chapter 6 reviews advanced self-assembly while chapter 7 looks at complex behaviour. Chapters 8 to 10 cover polymer adsorption at solid surfaces, polymers in solution and surface active polymers, respectively. Chapters 11 and 12 discuss adsorption and surface and interfacial tension, while Chapters 13- 16 deal with mixed surfactant systems. Chapter 17, 18 and 19 address microemulsions, colloidal stability and the rheology of polymer and surfactant solutions. Wetting and wetting agents, hydrophobization and hydrophobizing agents, solid dispersions, surfactant assemblies, foaming, emulsions and emulsifiers and microemulsions for soil and oil removal complete the coverage in chapters 20-25.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 913

Veröffentlichungsjahr: 2014

Bewertungen
4,7 (16 Bewertungen)
13
1
2
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

Cover

Title page

Copyright page

Preface

Acronyms

1 Types of Surfactants, their Synthesis, and Applications

Definition of a Surfactant

Surfactants Adsorb at Interfaces

Surfactants Aggregate in Solution and at Interfaces

All Surfactants Contain at Least One Polar Head Group and at Least One Hydrophobic Tail

Surface Active Compounds are Plentiful in Nature

Surfactant Raw Materials may be Based on Petrochemicals or Oleochemicals

Surfactants are Classified by the Polar Head Group

Hydrotropes and Solubilization

Gemini Surfactants have Special Features

Cleavable Surfactants are Attractive from an Environmental Point of View

Self-Aggregation of a Surfactant may Increase or Decrease the Hydrolysis Rate of Surfactants Containing a Labile Bond

Use of Polymerizable Surfactants is a Way to Immobilize the Surfactant

Applications of Polymerizable Surfactants

Special Surfactants Give Extreme Surface Tension Reduction

Bibliography

2 Environmental and Health Aspects of Surfactants

Environmental Concern is a Strong Driving Force for Surfactant Development

The Polar Head Group

The Hydrocarbon Tail

Biodegradability

The Rate of Biodegradation Depends on the Surfactant Structure

Aquatic Toxicity

Other Regulatory Concerns

Dermatological Aspects of Surfactants

REACH

Bibliography

3 Two Fundamental Forces in Surface and Colloid Chemistry

Counterion Binding Affects Self-Assembly and Adsorption of Surfactants and Polymers

The Hydrophobic Effect is due to the High Energy Density of Water

Bibliography

4 Surfactant Self-Assembly

Amphiphilic Molecules Self-Assemble

Surfactants Start to Form Micelles at the CMC

CMC Depends on Chemical Structure

Temperature and Cosolutes Affect CMC

The Solubility of Surfactants may be Strongly Temperature Dependent

Driving Forces of Micelle Formation and Thermodynamic Models

The Association Process and Counterion Binding can be Monitored by NMR Spectroscopy

Hydrophobic Compounds can be Solubilized in Micelles

Micelle Size and Structure

A Geometrical Consideration of Chain Packing Is Useful

Kinetics of Micelle Formation

Surfactants may Form Aggregates in Solvents Other than Water

General Comments on Amphiphile Self-Assembly

Bibliography

5 Introduction to Phase Diagrams

The Phase Rule Regulates the Number of Phases

Binodal and Spinodal—Metastable and Unstable

The Gibbs Triangle

Phase Behavior and the Gibbs Triangle

Examples of How to Read Phase Diagrams

Temperature is an Important Parameter

Four Components can be Represented by Pseudo-Phase Diagrams

Complexes Formed from Species of Opposite Charge Represent Complicated Phase Diagrams

Bibliography

6 Surfactant Self-Assembly

Micelle Type and Size Vary with Concentration

Micellar Growth is Different for Different Systems

The Shape of the Micelles Affects the Rheology of Solutions of Gemini Surfactants

Surfactant Phases are Built up by Discrete or Infinite Self-Assemblies

Micellar Solutions can Reach Saturation

Structures of Liquid Crystalline Phases

How to Determine Phase Diagrams

Binary Surfactant–Water Phase Diagrams can be Very Different

Three-Component Phase Diagrams are Complex but have a Direct Bearing on Applications

Surfactant Geometry and Packing Determine Aggregate Structure: The Packing Parameter is a useful Concept

Polar Lipids Show the same Phase Behavior as other Amphiphiles

Liquid Crystalline Phases may form in Solvents other than Water

Bibliography

7 Surfactants and Polymers Containing Oxyethylene Groups Show a Complex Behavior

Polyoxyethylene Chains make up the Hydrophilic Part of Many Surfactants and Polymers

CMC and Micellar Size of Oxyethylene-Based Surfactants are Strongly Temperature Dependent

Phase Diagrams are Very Different at Different Temperatures

The L

3

or “Sponge” Phase

Sequence of Self-Assembly Structures as a Function of Temperature

The Critical Packing Parameter and the Spontaneous Curvature Concepts are Useful Tools

Clouding is a Characteristic Feature of Polyoxyethylene-Based Surfactants and many Nonionic Polymers

Clouding is Strongly Dependent on Cosolutes

Physicochemical Properties of Block Copolymers Containing Polyoxyethylene Segments Resemble those of Polyoxyethylene-Based Surfactants

Temperature Anomalies of Oxyethylene-Based Surfactants and Polymers are Ubiquitous

Temperature Anomalies are Present in Solvents Other than Water and for Other Polymers

Bibliography

8 Surfactant Adsorption at Solid Surfaces

Surfactant Adsorption at Hydrophobic Surfaces

Surfactant Adsorption at Hydrophilic Surfaces

Surfactant Self-Assemblies at Surfaces Have Various Shapes

Adsolublization is the Solubilization of Substrates in the Surface Aggregates

Analysis of Surfactant Adsorption Isotherms

Model Surfaces and Methods to Determine Adsorption

Bibliography

9 Polymers in Solution

Polymer Properties are Governed by the Choice of Monomers

Molecular Weight is an Important Parameter

Dissolving a Polymer can be a Problem

The Solubility Parameter is Used to Find the Right Solvent

Polyelectrolytes are Polymers with Charges

Polymer Size and Shape are Important Characteristics

There are Various Classes of Water-Soluble Polymers

Polymers are Used as Thickeners

Polymers in Solution Differ from Ordinary Mixtures

There is a Bridge to Colloidal Systems

Phase Equilibrium Considerations

Mixtures of Two Polymers in Water

Bibliography

10 Surface Active Polymers

Surface Active Polymers can be Designed in Different Ways

Polymers with a Hydrophilic Backbone and Hydrophobic Side Chains

Polymers with a Hydrophobic Backbone and Hydrophilic Side Chains

Polymers with Alternating Hydrophilic and Hydrophobic Blocks

Polymeric Surfactants have Attractive Properties

Bibliography

11 Adsorption of Polymers at Solid Surfaces

The Adsorbed Amount Depends on Polymer Molecular Weight

Solubility has a Profound Influence on the Adsorption

Adsorption of Polyelectrolytes

Polymer Adsorption is Practically Irreversible

Polymers can be Desorbed

The Kinetics of Polymer Adsorption is Limited by Rearrangement

Measurement of Polymer Adsorption

Bibliography

12 Surface and Interfacial Tension

The Surface Tension of Droplets Increases their Pressure

Surface Tension is Related to Adsorption

The Surface Tension of Surfactant Solutions

Dynamic Surface Tension

Impurities in Surfactant Samples can Play a Major Role

Surface Tension of Polymer Solutions

Interfacial Tension

Measurement of Surface Tension

Bibliography

13 Mixed Surfactant Systems

The Behavior of Surfactant Mixtures Depends on the Relative Surface Activities and on Interactions

The CMC of an Ideal Mixture has a Simple Relationship to the Individual CMC Values

Many Other Surfactant Systems Require a Net Interaction

The Concept of Mixed Micelles can also be Applied to Amphiphiles not Forming Micelles

Mixed Surfactant Systems at Surfaces

Competitive Adsorption can be Understood from Thermodynamic Considerations

Surfactant Mediated Surfactant Adsorption

Surfactant Mixtures at the Air–Water Interface

Mixed Surfactant Systems at Higher Concentrations Show Interesting Features

Bibliography

14 Surfactant–Polymer Systems

There are many Technical Applications of Polymer–Surfactant Mixtures

Polymers can Induce Surfactant Aggregation

Attractive Polymer–Surfactant Interactions Depend on both Polymer and Surfactant

Surfactant Association to Surface Active Polymers can be Strong

The Interaction between a Surfactant and a Surface Active Polymer is Analogous to Mixed Micelle Formation

Phase Behavior of Polymer–Surfactant Mixtures Resembles that of Mixed Polymer Solutions

Phase Behavior of Polymer–Surfactant Mixtures in Relation to Polymer–Polymer and Surfactant–Surfactant Mixtures

Oppositely Charged Systems are Complex: Phase Structures and Phase Diagrams

Polymer–Surfactant Interactions are Significant for Gel Swelling and Gel Particles

Polymers may Change the Phase Behavior of Infinite Surfactant Self-Assemblies

DNA is Compacted by Cationic Surfactants, which Gives Opportunities for Gene Therapy

Bibliography

15 Surfactant–Protein Mixtures

Proteins are Amphiphilic

Surfactant–Protein Interactions have Broad Relevance

Surfactants Associate to Proteins and may Change their Conformation

Surface Tension and Solubilization give Evidence for Surfactant Binding to Proteins

The Binding Isotherms are Complex

Protein–Surfactant Solutions may have High Viscosities

Protein–Surfactant Solutions may give rise to Phase Separation

Surfactants may Induce Denaturation of Proteins

Bibliography

16 Surfactant–Polymer Mixtures at Interfaces

Surfactant–Polymer Interactions can both Increase and Decrease Adsorption

Surfactant–Polymer Systems Showing Associative Phase Separation Adsorb at Hydrophilic Surfaces

Surfactant–Polymer Complexes also Adsorb at Hydrophobic Surfaces

Surfactant–Polymer Systems Showing Segregative Phase Separation give Competitive Adsorption

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!