Surface Modification of Biopolymers -  - E-Book

Surface Modification of Biopolymers E-Book

0,0
136,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

This book addresses surface modification techniques, which are critical for tailoring and broadening the applications of naturally occurring biopolymers. Biopolymers represent a sustainable solution to the need for new materials in the auto, waste removal, biomedical device, building material, defense, and paper industries.

Features:

  • First comprehensive summary of biopolymer modification methods to enhance compatibility, flexibility, enhanced physicochemical properties, thermal stability, impact response, and rigidity, among others
  • Address of a green, eco-friendly materials that is increasing in use, underscoring the roles of material scientists in the future of new "green" bioolymer material use
  • Coverage applications in automotive development, hazardous waste removal, biomedical engineering, pulp and paper industries, development of new building materials, and defense-related technologies
  • Facilitation of technology transfer

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 742

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



CONTENTS

COVER

TITLE PAGE

LIST OF CONTRIBUTORS

PREFACE

1 SURFACE MODIFICATION OF BIOPOLYMERS

1.1 INTRODUCTION

1.2 STRUCTURES OF SOME COMMERCIALLY IMPORTANT BIOPOLYMERS

1.4 POLY(3-HYDROXYALKANOATES)

1.5 STARCH

REFERENCES

2 SURFACE MODIFICATION OF CHITOSAN AND ITS IMPLICATIONS IN TISSUE ENGINEERING AND DRUG DELIVERY

2.1 INTRODUCTION: BIOMATERIALS

2.2 CHITOSAN AS BIOMATERIAL: STRUCTURE–PROPERTY–FUNCTION RELATIONSHIP

2.3 CHEMICAL MODIFICATION OF CS: AN OVERVIEW

2.4 SUMMARY AND FINAL REMARKS

REFERENCES

3 MICROWAVE-IRRADIATED SYNTHESIS OF AGAR-BASED GRAFT COPOLYMERS

3.1 AGAR: THE POLYSACCHARIDE

3.2 GRAFT COPOLYMERIZATION

3.3 SYNTHESIS TECHNIQUES OF GRAFTING

3.4 ANALYTICAL EVIDENCE FOR THE SYNTHESIZED GRAFTED AGAR PRODUCTS

3.5 APPLICATION

3.6 MATRIX FOR CONTROLLED DRUG RELEASE

3.6 CONCLUSION

ACKNOWLEDGMENT

REFERENCES

4 ADAPTATION OF BIOPOLYMERS TO SPECIFIC APPLICATIONS

4.1 INTRODUCTION

4.2 BIOPOLYMERS IN CONTROLLED DRUG RELEASE

4.3 BIOPOLYMERS IN PACKAGING

4.4 BIOPOLYMERS IN AFFINITY CHROMATOGRAPHY

4.5 BIOPOLYMERS IN BIOSENSORS

REFERENCES

5 MODIFICATIONS OF LIGNOCELLULOSE FIBERS AND ITS APPLICATION IN ADSORPTION OF HEAVY METALS FROM AQUEOUS SOLUTION

5.1 INTRODUCTION

5.2 LIGNOCELLULOSIC ADSORBENTS

5.3 MODIFICATIONS REACTIONS: NEW ADSORBENTS FROM LIGNOCELLULOSIC RESIDUES

5.4 OTHER TYPES OF MODIFICATION

5.5 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

6 TAILORING SURFACE PROPERTIES OF DEGRADABLE POLY(3-HYDROXYALKANOATES) FOR BIOLOGICAL APPLICATIONS

6.1 INTRODUCTION

6.2 SURFACE PRETREATMENT METHODS

6.3 POLYMER GRAFTING METHODS

6.4 CONCLUSIONS

REFERENCES

7 PHYSICALLY AND CHEMICALLY MODIFIED STARCHES IN FOOD AND NON-FOOD INDUSTRIES

REFERENCES

8 POLYMER MODIFICATIONS AND RECENT TECHNOLOGICAL ADVANCES TOWARD LIVE CELL ENCAPSULATION AND DELIVERY

8.1 INTRODUCTION

8.2 ENCAPSULATED CELLS AND DERIVED PRODUCTS

8.3 MECHANISMS OF CELL ENCAPSULATION

8.4 LIMITATIONS OF HYDROGELS-BASED CELL ENCAPSULATION

8.5 AM-BASED CELL ENCAPSULATION TECHNIQUES

8.6 DIRECT WRITING

8.7 HYBRID PROCESS

8.8 ORGAN PRINTING

8.9 SUMMARY AND FUTURE DIRECTIONS

REFERENCES

9 SURFACE MODIFICATION OF NATURAL FIBERS FOR REINFORCEMENT IN POLYMERIC COMPOSITES

9.1 INTRODUCTION

9.2 SURFACE MODIFICATION METHODS

9.3 CONCLUSION

REFERENCES

10 SURFACE ELECTROCONDUCTIVE MODIFICATION OF BIOPOLYMERS

10.1 INTRODUCTION

10.2 ELECTROCONDUCTIVE MODIFICATION METHODS

10.3 MARKET FOR ELECTROCONDUCTIVE POLYMERS

10.4 CONCLUSIONS AND FUTURE PERSPECTIVES

REFERENCES

11 SURFACE MODIFICATION OF CELLULOSE NANOCRYSTALS FOR NANOCOMPOSITES

11.1 INTRODUCTION

11.2 SURFACE PHYSICAL MODIFICATION OF CELLULOSE NANOCRYSTALS

11.3 SURFACE CHEMICAL MODIFICATION OF CELLULOSE NANOCRYSTALS

11.4 EFFECTS OF SURFACE MODIFICATION ON NANOCOMPOSITE PROCESSING

11.5 EFFECTS OF SURFACE-MODIFIED CELLULOSE NANOCRYSTALS ON STRUCTURE AND MECHANICAL PROPERTIES OF NANOCOMPOSITES

11.6 CONCLUSION AND PROSPECTS

ACKNOWLEDGMENT

REFERENCES

12 BIOPOLYMER-BASED STIMULI-SENSITIVE FUNCTIONALIZED GRAFT COPOLYMERS AS CONTROLLED DRUG DELIVERY SYSTEMS

12.1 INTRODUCTION

12.2 MATERIALS AND METHODS

12.3 RESULTS AND DISCUSSION

12.4 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

13 NUCLEOPHILE-INDUCED SHIFT OF SURFACE PLASMON RESONANCE AND ITS IMPLICATION IN CHEMISTRY

13.1 INTRODUCTION

13.2 PLASMON

13.3 THEORETICAL BACKGROUND

13.4 LIGHT EXCITATION AND WAVE COUPLING SCHEMES

13.5 TEMPERATURE DEPENDENCE OF SPR

13.6 EFFECT OF REFRACTIVE INDEX

13.7 EFFECT OF DIELECTRIC CONSTANT

13.8 SIZE AND SHAPE DEPENDENCE

13.9 FERMI LEVEL

13.10 DAMPING

13.11 EFFECT OF ELETROPHILE AND NUCLEOPHILE ON SPR

13.12 APPLICATION

13.13 COMMERCIALIZATION OF SPR SENSOR TECHNOLOGY

13.14 CONCLUSION

SYMBOL AND ABBREVIATION

REFERENCES

14 SURFACE MODIFICATION OF NATURAL FIBER COMPOSITES AND THEIR POTENTIAL APPLICATIONS

14.1 INTRODUCTION

14.2 NATURAL FIBERS

14.3 CHEMICAL METHODS OF MODIFICATION OF THE NATURAL FIBERS FOR THE COMPOSITE PREPARATION

14.4 PHYSICAL METHODS OF MODIFICATION OF THE NATURAL FIBERS FOR THE COMPOSITE PREPARATION

14.5 EFFECT OF CHEMICAL TREATMENT ON THE MECHANICAL PROPERTIES OF NATURAL FIBER–REINFORCED POLYMER COMPOSITES

14.6 EFFECT OF CHEMICAL TREATMENT ON FIRE RESISTANCE OF NATURAL FIBER–REINFORCED POLYMER COMPOSITES

14.7 APPLICATIONS OF NATURAL FIBER–REINFORCED POLYMER COMPOSITES

14.8 FUTURE TRENDS IN THE USE OF NF-RPC

REFERENCES

15 EFFECT OF SURFACE MODIFICATION OF NATURAL CELLULOSIC FIBERS ON THE DIELECTRIC AND MECHANICAL PROPERTIES OF POLYMER COMPOSITES

15.1 INTRODUCTION

15.2 CHEMICAL FUNCTIONALIZATION OF CELLULOSIC FIBERS

15.3 RESULTS AND DISCUSSION

15.4 CONCLUSION

REFERENCES

INDEX

END USER LICENSE AGREEMENT

List of Tables

Chapter 03

Table 3.1 Synthesis details of Ag-

g

-PAM by conventional, microwave-initiated, and microwave-assisted techniques

Table 3.2 Significant stretching peaks (υ in cm

−1

) in FTIR spectra

Table 3.3 Details of the elemental composition

Table 3.4 Water quality of supernatants

Table 3.5

t

50

values of drug release from agar and from various grades of Ag-

g

-PAM matrix, under different pH dissolution media

Chapter 05

Table 5.1 Medium concentration of heavy metal ions from wastewater discharge in Latin America

Table 5.2 Adsorption of metal ions by treated or modified lignocellulosic material

Chapter 06

Table 6.1 Biological applications of modified PHAs

Chapter 08

Table 8.1 Directed differentiation of stem cells

Table 8.2 Polyelectrolytes for cell encapsulation

Table 8.3 Characteristics of AM techniques and their possibility for cell encapsulation

Table 8.4 Optical-based additive manufacturing techniques offering cell encapsulation

Table 8.5 Hydrogel-based organ printing: mechanism of gel formation

Chapter 09

Table 9.1 Typical mechanical properties of cellulose fiber versus E-glass fiber

Chapter 12

Table 12.1 Swelling (%) and swelling factor (

f

) of

p

-CT-Na

3

Cit-CAc in NaCl, CaCl

2

, and FeCl

3

solutions

Table 12.2

In vitro

release data of CT-Na

3

Cit, CT-Na

3

Cit-CAc, and

p-g

-CT-Na

3

Cit-CAc at two different pH (1.8 and 7.4)

Table 12.3 Kinetic parameters for drug release from DDS

Chapter 14

Table 14.1 Chemical composition of selected natural fibers

Table 14.2 Mechanical properties of some natural fibers when compared with E-glass

Table 14.3 Comparison of the measured average tensile properties of WG-treated and reported alkali-treated fibers

Table 14.4 Tensile properties of sisal fiber/PP composites

List of Illustrations

Chapter 01

FIGURE 1.1 Structure of lignocell ulosic natural fiber.

FIGURE 1.2 Structure of cellulose.

FIGURE 1.3 Structure of chitosan, chitin, and cellulose.

FIGURE 1.4 Deacetylation of chitin to chitosan.

FIGURE 1.5 Schematic illustration of chitosan’s versatility. At high pH (above 6.5), chitosan’s amine groups are deprotonated and reactive. At low pH (<6.7), chitosan’s amines are protonated, confirming the polycationic behavior of chitosan.

FIGURE 1.6 Chemical modification of chitosan for different applications: (a) methylation, (b) thiolation, (c) azylation, (d) copolymerization, and (e) N-succinylation.

FIGURE 1.7 Structural motifs of agar polysaccharides showing carbon numbering (C

1

C

6

).

FIGURE 1.8 SEM micrographs of nontreated (a) and alkali-treated (b) mesoporous agar materials.

FIGURE 1.9 Attenuated total reflectance infrared (FTIR-ATR) spectra of nontreated (a) and alkali-treated (b) agar extracted from

Gracilaria gracilis

.

FIGURE 1.10 CP-MAS

13

C NMR spectra of native agar (a) extracted at 100°C and alkali-treated agar (b) extracted at 140°C from

Gracilaria

. Top structure depicts the various carbons (C

1

C

6

from G and AG) associated with the different NMR peaks.

FIGURE 1.11 Chemical structure of PHAs.

FIGURE 1.12 Overview of PHA synthesis: schematic depiction of (a) chain polymerization catalyzed by enzymes, (b) a PHA granule with granule-associated proteins, (c) different forms of the PHB polymer chain, and (d) semicrystalline polymer structure. (e) AFM image of PHBV film; (f) final plastic products.

FIGURE 1.13 Proposed polymerization mechanism for the synthesis of PHA.

FIGURE 1.14 Variation of phase structures in PHB/PHB-HV blends.

FIGURE 1.15 Structure sketches of starch granules.

FIGURE 1.16 A- and B-type polymorphs of amylase.

FIGURE 1.17 SEM microstructure of potato starch with details of outer and inner part of starch structure: native (a); treated with high pressure at 600 MPa 3 min (b–d).

Chapter 02

FIGURE 2.1 Chemical structure of chitosan (CS) illustrating the primary amine (

NH

2

) and primary and secondary hydroxyl (

OH) functional groups used for surface modification of chitosan.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!