136,99 €
This book addresses surface modification techniques, which are critical for tailoring and broadening the applications of naturally occurring biopolymers. Biopolymers represent a sustainable solution to the need for new materials in the auto, waste removal, biomedical device, building material, defense, and paper industries.
Features:
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 742
Veröffentlichungsjahr: 2015
COVER
TITLE PAGE
LIST OF CONTRIBUTORS
PREFACE
1 SURFACE MODIFICATION OF BIOPOLYMERS
1.1 INTRODUCTION
1.2 STRUCTURES OF SOME COMMERCIALLY IMPORTANT BIOPOLYMERS
1.4 POLY(3-HYDROXYALKANOATES)
1.5 STARCH
REFERENCES
2 SURFACE MODIFICATION OF CHITOSAN AND ITS IMPLICATIONS IN TISSUE ENGINEERING AND DRUG DELIVERY
2.1 INTRODUCTION: BIOMATERIALS
2.2 CHITOSAN AS BIOMATERIAL: STRUCTURE–PROPERTY–FUNCTION RELATIONSHIP
2.3 CHEMICAL MODIFICATION OF CS: AN OVERVIEW
2.4 SUMMARY AND FINAL REMARKS
REFERENCES
3 MICROWAVE-IRRADIATED SYNTHESIS OF AGAR-BASED GRAFT COPOLYMERS
3.1 AGAR: THE POLYSACCHARIDE
3.2 GRAFT COPOLYMERIZATION
3.3 SYNTHESIS TECHNIQUES OF GRAFTING
3.4 ANALYTICAL EVIDENCE FOR THE SYNTHESIZED GRAFTED AGAR PRODUCTS
3.5 APPLICATION
3.6 MATRIX FOR CONTROLLED DRUG RELEASE
3.6 CONCLUSION
ACKNOWLEDGMENT
REFERENCES
4 ADAPTATION OF BIOPOLYMERS TO SPECIFIC APPLICATIONS
4.1 INTRODUCTION
4.2 BIOPOLYMERS IN CONTROLLED DRUG RELEASE
4.3 BIOPOLYMERS IN PACKAGING
4.4 BIOPOLYMERS IN AFFINITY CHROMATOGRAPHY
4.5 BIOPOLYMERS IN BIOSENSORS
REFERENCES
5 MODIFICATIONS OF LIGNOCELLULOSE FIBERS AND ITS APPLICATION IN ADSORPTION OF HEAVY METALS FROM AQUEOUS SOLUTION
5.1 INTRODUCTION
5.2 LIGNOCELLULOSIC ADSORBENTS
5.3 MODIFICATIONS REACTIONS: NEW ADSORBENTS FROM LIGNOCELLULOSIC RESIDUES
5.4 OTHER TYPES OF MODIFICATION
5.5 CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
6 TAILORING SURFACE PROPERTIES OF DEGRADABLE POLY(3-HYDROXYALKANOATES) FOR BIOLOGICAL APPLICATIONS
6.1 INTRODUCTION
6.2 SURFACE PRETREATMENT METHODS
6.3 POLYMER GRAFTING METHODS
6.4 CONCLUSIONS
REFERENCES
7 PHYSICALLY AND CHEMICALLY MODIFIED STARCHES IN FOOD AND NON-FOOD INDUSTRIES
REFERENCES
8 POLYMER MODIFICATIONS AND RECENT TECHNOLOGICAL ADVANCES TOWARD LIVE CELL ENCAPSULATION AND DELIVERY
8.1 INTRODUCTION
8.2 ENCAPSULATED CELLS AND DERIVED PRODUCTS
8.3 MECHANISMS OF CELL ENCAPSULATION
8.4 LIMITATIONS OF HYDROGELS-BASED CELL ENCAPSULATION
8.5 AM-BASED CELL ENCAPSULATION TECHNIQUES
8.6 DIRECT WRITING
8.7 HYBRID PROCESS
8.8 ORGAN PRINTING
8.9 SUMMARY AND FUTURE DIRECTIONS
REFERENCES
9 SURFACE MODIFICATION OF NATURAL FIBERS FOR REINFORCEMENT IN POLYMERIC COMPOSITES
9.1 INTRODUCTION
9.2 SURFACE MODIFICATION METHODS
9.3 CONCLUSION
REFERENCES
10 SURFACE ELECTROCONDUCTIVE MODIFICATION OF BIOPOLYMERS
10.1 INTRODUCTION
10.2 ELECTROCONDUCTIVE MODIFICATION METHODS
10.3 MARKET FOR ELECTROCONDUCTIVE POLYMERS
10.4 CONCLUSIONS AND FUTURE PERSPECTIVES
REFERENCES
11 SURFACE MODIFICATION OF CELLULOSE NANOCRYSTALS FOR NANOCOMPOSITES
11.1 INTRODUCTION
11.2 SURFACE PHYSICAL MODIFICATION OF CELLULOSE NANOCRYSTALS
11.3 SURFACE CHEMICAL MODIFICATION OF CELLULOSE NANOCRYSTALS
11.4 EFFECTS OF SURFACE MODIFICATION ON NANOCOMPOSITE PROCESSING
11.5 EFFECTS OF SURFACE-MODIFIED CELLULOSE NANOCRYSTALS ON STRUCTURE AND MECHANICAL PROPERTIES OF NANOCOMPOSITES
11.6 CONCLUSION AND PROSPECTS
ACKNOWLEDGMENT
REFERENCES
12 BIOPOLYMER-BASED STIMULI-SENSITIVE FUNCTIONALIZED GRAFT COPOLYMERS AS CONTROLLED DRUG DELIVERY SYSTEMS
12.1 INTRODUCTION
12.2 MATERIALS AND METHODS
12.3 RESULTS AND DISCUSSION
12.4 CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
13 NUCLEOPHILE-INDUCED SHIFT OF SURFACE PLASMON RESONANCE AND ITS IMPLICATION IN CHEMISTRY
13.1 INTRODUCTION
13.2 PLASMON
13.3 THEORETICAL BACKGROUND
13.4 LIGHT EXCITATION AND WAVE COUPLING SCHEMES
13.5 TEMPERATURE DEPENDENCE OF SPR
13.6 EFFECT OF REFRACTIVE INDEX
13.7 EFFECT OF DIELECTRIC CONSTANT
13.8 SIZE AND SHAPE DEPENDENCE
13.9 FERMI LEVEL
13.10 DAMPING
13.11 EFFECT OF ELETROPHILE AND NUCLEOPHILE ON SPR
13.12 APPLICATION
13.13 COMMERCIALIZATION OF SPR SENSOR TECHNOLOGY
13.14 CONCLUSION
SYMBOL AND ABBREVIATION
REFERENCES
14 SURFACE MODIFICATION OF NATURAL FIBER COMPOSITES AND THEIR POTENTIAL APPLICATIONS
14.1 INTRODUCTION
14.2 NATURAL FIBERS
14.3 CHEMICAL METHODS OF MODIFICATION OF THE NATURAL FIBERS FOR THE COMPOSITE PREPARATION
14.4 PHYSICAL METHODS OF MODIFICATION OF THE NATURAL FIBERS FOR THE COMPOSITE PREPARATION
14.5 EFFECT OF CHEMICAL TREATMENT ON THE MECHANICAL PROPERTIES OF NATURAL FIBER–REINFORCED POLYMER COMPOSITES
14.6 EFFECT OF CHEMICAL TREATMENT ON FIRE RESISTANCE OF NATURAL FIBER–REINFORCED POLYMER COMPOSITES
14.7 APPLICATIONS OF NATURAL FIBER–REINFORCED POLYMER COMPOSITES
14.8 FUTURE TRENDS IN THE USE OF NF-RPC
REFERENCES
15 EFFECT OF SURFACE MODIFICATION OF NATURAL CELLULOSIC FIBERS ON THE DIELECTRIC AND MECHANICAL PROPERTIES OF POLYMER COMPOSITES
15.1 INTRODUCTION
15.2 CHEMICAL FUNCTIONALIZATION OF CELLULOSIC FIBERS
15.3 RESULTS AND DISCUSSION
15.4 CONCLUSION
REFERENCES
INDEX
END USER LICENSE AGREEMENT
Chapter 03
Table 3.1 Synthesis details of Ag-
g
-PAM by conventional, microwave-initiated, and microwave-assisted techniques
Table 3.2 Significant stretching peaks (υ in cm
−1
) in FTIR spectra
Table 3.3 Details of the elemental composition
Table 3.4 Water quality of supernatants
Table 3.5
t
50
values of drug release from agar and from various grades of Ag-
g
-PAM matrix, under different pH dissolution media
Chapter 05
Table 5.1 Medium concentration of heavy metal ions from wastewater discharge in Latin America
Table 5.2 Adsorption of metal ions by treated or modified lignocellulosic material
Chapter 06
Table 6.1 Biological applications of modified PHAs
Chapter 08
Table 8.1 Directed differentiation of stem cells
Table 8.2 Polyelectrolytes for cell encapsulation
Table 8.3 Characteristics of AM techniques and their possibility for cell encapsulation
Table 8.4 Optical-based additive manufacturing techniques offering cell encapsulation
Table 8.5 Hydrogel-based organ printing: mechanism of gel formation
Chapter 09
Table 9.1 Typical mechanical properties of cellulose fiber versus E-glass fiber
Chapter 12
Table 12.1 Swelling (%) and swelling factor (
f
) of
p
-CT-Na
3
Cit-CAc in NaCl, CaCl
2
, and FeCl
3
solutions
Table 12.2
In vitro
release data of CT-Na
3
Cit, CT-Na
3
Cit-CAc, and
p-g
-CT-Na
3
Cit-CAc at two different pH (1.8 and 7.4)
Table 12.3 Kinetic parameters for drug release from DDS
Chapter 14
Table 14.1 Chemical composition of selected natural fibers
Table 14.2 Mechanical properties of some natural fibers when compared with E-glass
Table 14.3 Comparison of the measured average tensile properties of WG-treated and reported alkali-treated fibers
Table 14.4 Tensile properties of sisal fiber/PP composites
Chapter 01
FIGURE 1.1 Structure of lignocell ulosic natural fiber.
FIGURE 1.2 Structure of cellulose.
FIGURE 1.3 Structure of chitosan, chitin, and cellulose.
FIGURE 1.4 Deacetylation of chitin to chitosan.
FIGURE 1.5 Schematic illustration of chitosan’s versatility. At high pH (above 6.5), chitosan’s amine groups are deprotonated and reactive. At low pH (<6.7), chitosan’s amines are protonated, confirming the polycationic behavior of chitosan.
FIGURE 1.6 Chemical modification of chitosan for different applications: (a) methylation, (b) thiolation, (c) azylation, (d) copolymerization, and (e) N-succinylation.
FIGURE 1.7 Structural motifs of agar polysaccharides showing carbon numbering (C
1
─
C
6
).
FIGURE 1.8 SEM micrographs of nontreated (a) and alkali-treated (b) mesoporous agar materials.
FIGURE 1.9 Attenuated total reflectance infrared (FTIR-ATR) spectra of nontreated (a) and alkali-treated (b) agar extracted from
Gracilaria gracilis
.
FIGURE 1.10 CP-MAS
13
C NMR spectra of native agar (a) extracted at 100°C and alkali-treated agar (b) extracted at 140°C from
Gracilaria
. Top structure depicts the various carbons (C
1
─
C
6
from G and AG) associated with the different NMR peaks.
FIGURE 1.11 Chemical structure of PHAs.
FIGURE 1.12 Overview of PHA synthesis: schematic depiction of (a) chain polymerization catalyzed by enzymes, (b) a PHA granule with granule-associated proteins, (c) different forms of the PHB polymer chain, and (d) semicrystalline polymer structure. (e) AFM image of PHBV film; (f) final plastic products.
FIGURE 1.13 Proposed polymerization mechanism for the synthesis of PHA.
FIGURE 1.14 Variation of phase structures in PHB/PHB-HV blends.
FIGURE 1.15 Structure sketches of starch granules.
FIGURE 1.16 A- and B-type polymorphs of amylase.
FIGURE 1.17 SEM microstructure of potato starch with details of outer and inner part of starch structure: native (a); treated with high pressure at 600 MPa 3 min (b–d).
Chapter 02
FIGURE 2.1 Chemical structure of chitosan (CS) illustrating the primary amine (
─
NH
2
) and primary and secondary hydroxyl (
─
OH) functional groups used for surface modification of chitosan.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
