153,99 €
The Retinoids: Biology, Biochemistry, and Disease provides an overview and synthesis of the retinoid molecules, from basic biology to mechanisms of diseases and therapy. Divided into five sections, the book covers retinoic acid signaling from biochemical, genetic, developmental, and clinical perspectives.
The text is divided into five sections, the first of which examines vitamin A metabolic and enzymatic pathways. Focus then shifts to the role of retinoic acid signaling in development, and then to retinoids and physiological function. The book concludes with chapters on retinoids, disease and therapy.
Comprehensive in scope and written by leading researchers in the field, The Retinoids: Biology, Biochemistry, and Disease will be an essential reference for biologists, biochemists, geneticists and developmental biologists, as well as for clinicians and pharmacists engaged in clinical research involving retinoids.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1309
Veröffentlichungsjahr: 2015
COVER
TITLE PAGE
CONTRIBUTORS
PREFACE
PART I: VITAMIN A METABOLIC AND ENZYMATIC PATHWAYS
1 VITAMIN A METABOLISM, STORAGE AND TISSUE DELIVERY MECHANISMS
I. INTRODUCTION
II. VITAMIN A METABOLISM RELEVANT TO ITS STORAGE
III. VITAMIN A STORAGE
IV. VITAMIN A TRANSPORT IN THE CIRCULATION
V. INTEGRATION WITHIN THE INTACT ORGANISM OF VITAMIN A METABOLISM, STORAGE AND TRANSPORT
ACKNOWLEDGMENTS
REFERENCES
2 ASSIMILATION AND CONVERSION OF DIETARY VITAMIN A INTO BIOACTIVE RETINOIDS
I. INTRODUCTION
II. DIETARY SOURCES OF VITAMIN A AND PROVITAMIN A CAROTENOIDS
III. INTESTINAL ABSORPTION AND METABOLISM OF DIETARY VITAMIN A AND PROVITAMIN A CAROTENOIDS
IV. FORMATION OF β-APOCAROTENOIDS
V. POSSIBLE BIOLOGICAL FUNCTIONS OF APOCAROTENOIDS
VI. CONCLUSIONS AND PERSPECTIVES
ACKNOWLEDGMENTS
REFERENCES
3 INTRACELLULAR STORAGE AND METABOLIC ACTIVATION OF RETINOIDS: LIPID DROPLETS
I. INTRODUCTION
II. MULTILOCULAR LIPID DROPLETS
III. THE MITOCHONDRIAL-ASSOCIATED MEMBRANE
IV. BIRTH OF LIPID DROPLETS
V. LIPID DROPLETS AND RETINOID HOMEOSTASIS
VI. IN THE ABSENCE OF LIPID DROPLETS, LRAT AND RDH1 LOCALIZE WITH THE ER, WHEREAS CRBP1 AND RDH10 LOCALIZE WITH MITOTRACKER
VII. DURING ACYL ESTER BIOSYNTHESIS LRAT, CRBP1 AND RDH10 ASSOCIATE WITH LIPID DROPLETS
VIII. LIPID DROPLET ASSOCIATION ACTIVATES RDH10
IX. LIPID DROPLET ASSOCIATION REQUIRES THE N-TERMINI OF LRAT AND RDH10
X. SUMMARY
XI. CONCLUSIONS AND FUTURE DIRECTIONS
REFERENCES
4 EVOLUTION OF THE RETINOIC ACID SIGNALING PATHWAY
I. INTRODUCTION
II. AN OVERVIEW OF CHORDATE RETINOID METABOLISM
III. RETINOIC ACID SIGNALING IN CHORDATES
IV. EVOLUTION OF RETINOIC ACID SIGNALING
V. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
PART II: BIOCHEMISTRY AND CELLULAR BIOLOGY OF RETINOIC ACID SIGNALING
5 CONTROL OF GENE EXPRESSION BY NUCLEAR RETINOIC ACID RECEPTORS: POST-TRANSLATIONAL AND EPIGENETIC REGULATORY MECHANISMS
I. INTRODUCTION
II. THE BASICS OF RAR STRUCTURE
III. REPRESSIVE EPIGENETIC LANDSCAPE OF RAR TARGET GENES IN THE ABSENCE OF RETINOIC ACID
IV. REORGANIZATION OF THE EPIGENETIC LANDSCAPE AFTER RETINOIC ACID ADDITION
V. NONCODING RNAS IN THE REGULATION OF THE EPIGENETIC LANDSCAPE
VI. BACK TO A REPRESSIVE EPIGENETIC LANDSCAPE WHEN TRANSCRIPTION TURNS “OFF”
VII. PHOSPHORYLATION: ANOTHER POST-TRANSLATIONAL MODIFICATION CODE INDUCED BY RETINOIC ACID
VIII. TWO MODELS FOR THE ACTIVATION OF RAR TARGET GENES VIA A SEA OF POST-TRANSLATIONAL MODIFICATIONS AND EPIGENETIC CHANGES
IX. ABERRANT EPIGENICS IN CANCER: CONSEQUENCES ON THE RETINOIC ACID RESPONSE
X. CONCLUSION AND FUTURE PROSPECTS
REFERENCES
6 RETINOIC ACID RECEPTOR COREGULATORS IN EPIGENETIC REGULATION OF TARGET GENES
I. INTRODUCTION
II. COREGULATORS OF RARS AND RXRS
III. COREGULATORS IN EPIGENETIC REGULATION
IV. THE FUTURE
ACKNOWLEDGMENTS
REFERENCES
7 RETINOID RECEPTORS: PROTEIN STRUCTURE, DNA RECOGNITION AND STRUCTURE–FUNCTION RELATIONSHIPS
I. INTRODUCTION
II. GENERAL ORGANIZATION OF RETINOID RECEPTORS
III. STRUCTURE OF FULL-LENGTH RAR–RXR–DNA COMPLEXES
IV. COREGULATOR BINDING
V. STRUCTURAL BASIS FOR ALLOSTERIC CONTROL MECHANISMS OF COFACTOR BINDING
VI. CONCLUSIONS
REFERENCES
8 HOW THE RAR–RXR HETERODIMER RECOGNIZES THE GENOME
I. INTRODUCTION
II. HORMONE RESPONSE ELEMENTS
III. VDR AND TR OCCUPY DR3 AND DR4 ELEMENTS IN CULTURED CELLS
IV. PPAR AND LXR PREFER NONCONSENSUS ELEMENTS
V. GENOMIC BINDING OF THE RAR–RXR HETERODIMER
VI. SUMMARY AND CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
9 RETINOID RECEPTOR-SELECTIVE MODULATORS
I. INTRODUCTION
II. RXR
VERSUS
RAR SELECTIVITY AS A FUNCTION OF THE LIGAND-BINDING POCKET ARCHITECTURES
III. SYSTEMS BIOLOGY OF RETINOID ACTION
IV. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
10 USE OF RETINOID RECEPTOR LIGANDS TO IDENTIFY OTHER NUCLEAR RECEPTOR LIGANDS
I. INTRODUCTION
II. NUCLEAR RECEPTOR AND LIGAND SIMILARITIES
III. APOPTOSIS INDUCTION BY AHPN
IV. STRUCTURE–ACTIVITY RELATIONSHIP STUDIES LEADING TO A PRECLINICAL CANDIDATE
V. IDENTIFICATION OF SMALL HETERODIMER PARTNER (SHP) AS A RETINOID-RELATED MOLECULE (RRM) TARGET
VI. SMALL HETERODIMER PARTNER STRUCTURE AND FUNCTION
VII. CONSTRUCTION OF A SMALL HETERODIMER PARTNER MODEL TO FACILITATE LIGAND DESIGN
VIII. RETINOID-RELATED MOLECULE MECHANISM OF ACTION STUDIES
IX. ADDITIONAL TARGETS OF RETINOID-RELATED MOLECULES
X. RETINOID-RELATED MOLECULE MECHANISM OF ACTION STUDIES BY OTHER GROUPS
XI. INVESTIGATIONS ON THE MECHANISM OF ACTION OF SMALL HETERODIMER PARTNER IN THE ABSENCE OF AN ADDED RETINOID-RELATED MOLECULE
REFERENCES
11 THE DUAL TRANSCRIPTIONAL ACTIVITY OF RETINOIC ACID
I. RETINOIC ACID RECEPTORS: PPARβ/δ JOINS RARS
II. RETINOIC ACID-BINDING PROTEINS: CRABP2 AND FABP5 COOPERATE WITH RAR AND PPARβ/δ
III. BIOLOGICAL ACTIVITIES OF RETINOIC ACID CRITICALLY RELY ON PRECISE BALANCE BETWEEN ITS DUAL TRANSCRIPTIONAL PATHWAYS
IV. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
12 RETINOIDS, EPIGENETIC CHANGES DURING STEM CELL DIFFERENTIATION, AND CELL LINEAGE CHOICE
I. INTRODUCTION
II. RETINOIC ACID SIGNALING IS ASSOCIATED WITH TRANSCRIPTIONAL ACTIVATION AND EPIGENETIC CHANGES IN STEM CELLS
III. RETINOIDS AND EPIGENETIC MODIFICATIONS
IV. RETINOIC ACID AND THE DIFFERENTIATION OF EMBRYONIC STEM CELLS ALONG VARIOUS LINEAGES: SIX EXAMPLES
V. DETERMINANTS OF THE STABILITY OF THE DIFFERENTIATED PHENOTYPE
VI. SUMMARY AND FUTURE DIRECTIONS
ACKNOWLEDGMENTS
REFERENCES
PART III: RETINOIC ACID SIGNALING IN DEVELOPMENT
13 RETINOIC ACID SIGNALING AND CENTRAL NERVOUS SYSTEM DEVELOPMENT
I. INTRODUCTION
II. THE BEGINNING OF RETINOIC ACID SIGNALING AT EARLY NODE STAGES (FIGURE 13.1A, hn)
III. RETINOIC ACID SIGNALING AS THE NEURAL PLATE FORMS AND UNDERGOES ANTEROPOSTERIOR PATTERNING (FIGURE 13.1B, np)
IV. HINDBRAIN SPECIFICATION (FIGURE 13.1C, hb)
V. THE HINDBRAIN GRADIENT OF RETINOIC ACID (FIGURE 13.1C, hb)
VI. SPINAL CORD FORMATION AND PATTERNING AT THE POSTERIOR END OF THE EMBRYO (FIGURE 13.1C, 13.1D, cs)
VII. DORSOVENTRAL PATTERNING IN THE SPINAL CORD AND MOTOR NEURON SPECIFICATION (FIGURE 13.1D, sc)
VIII. RETURN TO THE FRONT OF THE EMBRYO: OUTGROWTH OF THE TELENCEPHALON (FIGURE 13.1E, fn)
IX. OLFACTORY DEVELOPMENT (FIGURE 13.1E, olf)
X. THE EYE (FIGURE 13.1E, F)
XI. PATTERNING WITHIN THE TELENCEPHALON: THE LATERAL GANGLIONIC EMINENCE (FIGURE 13.1F, lge)
XII. THE LATER HINDBRAIN AND CORTEX (FIGURE 13.1F)
XIII. CONCLUSION
REFERENCES
NOTE
14 THE ROLE OF RETINOIC ACIDIN LIMB DEVELOPMENT
I. INTRODUCTION
II. ENZYMES AND RECEPTORS FOR RETINOIC ACID SYNTHESIS AND SIGNALING
III. GENETIC MODELS FOR INVESTIGATION OF RETINOIC ACID FUNCTION DURING LIMB DEVELOPMENT
IV. RETINOIC ACID IS NOT REQUIRED FOR LIMB AXIAL PATTERNING
V. FORELIMB INDUCTION REQUIRES RETINOIC ACID SIGNALING
VI. RETINOIC ACID IS REQUIRED FOR INTERDIGITAL DEVELOPMENT
VII. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
15 RETINOIC ACID SIGNALING AND HEART DEVELOPMENT
I. INTRODUCTION
II. EARLY FUNCTIONS IN FORMATION AND PATTERNING OF THE SECOND HEART FIELD
III. THE EPICARDIUM: A SOURCE OF RA-REGULATED SIGNALS CONTROLLING MYOCARDIAL CELL PROLIFERATION AND DIFFERENTIATION
IV. ACTIONS ON PROGENITOR CELL POPULATIONS
V. INTERACTIONS WITH OTHER SIGNALING PATHWAYS: CLUES TO CONGENITAL MALFORMATIONS
VI. CONCLUSIONS AND PERSPECTIVES
ACKNOWLEDGMENTS
REFERENCES
16 RETINOIC ACID IN THE DEVELOPING LUNG AND OTHER FOREGUT DERIVATIVES
I. INTRODUCTION
II. FROM PATTERNING OF THE FOREGUT TO LUNG DEVELOPMENT
III. RETINOIC ACID SIGNALING CONTROLS A GENE NETWORK CRUCIAL FOR EARLY LUNG DEVELOPMENT
IV. INVOLVEMENT OF RETINOIC ACID IN BRANCHING MORPHOGENESIS AND LUNG EPITHELIAL DIFFERENTIATION
V. OTHER FUNCTIONS OF RETINOIC ACID IN LUNG DEVELOPMENT
VI. RETINOIC ACID IN POSTNATAL LUNG DEVELOPMENT AND LUNG REPAIR
VII. DISTINCT ROLES FOR RETINOIC ACID IN ORGANOGENESIS OF OTHER FOREGUT DERIVATIVES
VIII. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
17 RETINOIC ACID AND THE CONTROL OF MEIOTIC INITIATION
I. INTRODUCTION
II. GERM CELLS AND MEIOSIS
III. A ROLE FOR RETINOIC ACID IN INITIATING MEIOSIS IN THE FETAL OVARY
IV. WHAT IS THE SOURCE OF RETINOIC ACID IN THE OVARY?
V. WHAT ABOUT MEIOSIS IN THE TESTIS?
VI. RETINOIC ACID TRIGGERS MEIOSIS IN A RANGE OF VERTEBRATES
VII. WHY DO ONLY GERM CELLS RESPOND TO RETINOIC ACID BY UPREGULATING
Stra8
?
VIII. IS THERE SUFFICIENT RETINOIC ACID IN THE MOUSE FETAL OVARY TO TRIGGER EXPRESSION?
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
