85,99 €
The seismoelectric method consists of measuring electromagnetic signals associated with the propagation of seismic waves or seismic sources in porous media. This method is useful in an increasing number of applications, for example to characterize aquifers, contaminant plumes or the vadose zone. This book provides the first full overview of the fundamental concepts of this method. It begins with a historical perspective, provides a full explanation of the fundamental mechanisms, laboratory investigations, and the formulation of the forward and inverse problems. It provides a recent extension of the theory to two-phase flow conditions, and a new approach called seismoelectric beamforming. It concludes with a chapter presenting a perspective on the method.
This book is a key reference for academic researchers in geophysics, environmental geosciences, geohydrology, environmental engineering and geotechnical engineering. It will also be valuable reading for graduate courses dealing with seismic wave propagation and related electromagnetic effects.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 652
Veröffentlichungsjahr: 2015
Cover
Title page
Foreword by Bernd Kulessa
Foreword by Niels Grobbe
Preface
References
Acknowledgments
CHAPTER 1: Introduction to the basic concepts
1.1 The electrical double layer
1.2 The streaming current density
1.3 The complex conductivity
1.4 Principles of the seismoelectric method
1.5 Elements of poroelasticity
1.6 Short history
1.7 Conclusions
References
CHAPTER 2: Seismoelectric theory in saturated porous media
2.1 Poroelastic medium filled with a viscoelastic fluid
2.2 Poroelastic medium filled with a Newtonian fluid
2.3 Experimental approach and data
2.4 Conclusions
References
CHAPTER 3: Seismoelectric theory in partially saturated conditions
3.1 Extension to the unsaturated case
3.2 Extension to two-phase flow
3.3 Extension of the acoustic approximation
3.4 Complex conductivity in partially saturated conditions
3.5 Comparison with experimental data
3.6 Conclusions
References
CHAPTER 4: Forward and inverse modeling
4.1 Finite-element implementation
4.2 Synthetic case study
4.3 Stochastic inverse modeling
4.4 Deterministic inverse modeling
4.5 Conclusions
References
CHAPTER 5: Electrical disturbances associated with seismic sources
5.1 Theory
5.2 Joint inversion of seismic and seismoelectric data
5.3 Hydraulic fracturing laboratory experiment
5.4 Haines jump laboratory experiment
5.5 Small-scale experiment in the field
5.6 Conclusions
References
CHAPTER 6: The seismoelectric beamforming approach
6.1 Seismoelectric beamforming in the poroacoustic approximation
6.2 Application to an enhanced oil recovery problem
6.3 High-definition resistivity imaging
6.4 Spectral seismoelectric beamforming (SSB)
6.5 Conclusions
References
CHAPTER 7: Application to the vadose zone
7.1 Data acquisition
7.2 Case study: Sherwood sandstone
7.3 Numerical modeling
7.4 Conclusions
References
CHAPTER 8: Conclusions and perspectives
Glossary: The Seismoelectric Method
Index
End User License Agreement
Chapter 01
Table 1.1 Equilibrium constants for surface complexes at the surface of a silica sand.
Table 1.2 Optimized double layer parameters for the three main types of clay minerals (at 25°C).
Chapter 02
Table 2.1 Nomenclature of the nonmechanical material properties.
Table 2.2 Nomenclature of the mechanical material properties.
Table 2.3 Material properties used in the seismoelectric forward model.
Chapter 03
Table 3.1 Petrophysical properties of the soil used to solve the seismoelectric coupling.
Table 3.2 Petrophysical properties of the samples discussed in the main text.
Chapter 04
Table 4.1 Material properties used for the numerical benchmark.
Table 4.2 Material properties used in the saturation front detection. We use Model A described in Chapter 3 with
n
=2.
Table 4.3 True values of the material properties used for the synthetic model shown in Figure 4.10.
Table 4.4 Material properties used for the numerical simulations corresponding to the case study #1.
Table 4.5 Material properties for the numerical simulation corresponding to the case study #2 for which the inclusion U2 is used to simulate a porous formation with oil.
Chapter 05
Table 5.1 Material properties of the two layers L1 and L2 used for the forward model.
Chapter 06
Table 6.1 Petrophysical properties for the background and Anomalies 1 and 2.
Table 6.2 Material properties used in the saturation front detection. We use
m
n
= 2 for the first and second Archie’s exponents.
Table 6.3 Material properties used for the simulations. The viscosity of the pore water is taken equal to 10
−3
Pa s.
Chapter 07
Table 7.1 Material properties used in the numerical modeling.
Chapter 01
Figure 1.1 Sketch of the electrical double layer at the pore water–mineral interface coating a spherical grain (modified from Revil & Florsch, 2010). The local conductivity
σ
(
χ
) depends on the local distance
χ
from the charged surface of the mineral. The pore water is characterized by a volumetric charge density
corresponding to the (total) charge of the diffuse layer per unit pore volume (in coulombs (C) m
−3
). The Stern layer is responsible for the excess surface conductivity ∑
S
(in siemens, S) with respect to the conductivity of the pore water , while the diffuse layer is responsible for the excess surface conductivity ∑. These surface conductivities are sometimes called specific surface conductance because of their dimension, but they are true surface conductivities. The Stern layer is comprised between the o-plane (mineral surface) and the d-plane, which is the inner plane of the electrical diffuse layer (OHP stands for outer Helmholtz plane). The diffuse layer extends from the d-plane into the pores. The element M stands for the metal cations (e.g., sodium, Na), while A stands for the anions (e.g., chloride, Cl). In the present case (negatively charged mineral surface), M denotes the counterions, while A denotes the coions. The fraction of charge contained in the Stern layer with respect to the total charge of the double layer is called the partition coefficient .
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
