Transient Analysis of Power Systems -  - E-Book

Transient Analysis of Power Systems E-Book

0,0
112,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

The simulation of electromagnetic transients is a mature field that plays an important role in the design of modern power systems. Since the first steps in this field to date, a significant effort has been dedicated to the development of new techniques and more powerful software tools. Sophisticated models, complex solution techniques and powerful simulation tools have been developed to perform studies that are of supreme importance in the design of modern power systems. The first developments of transients tools were mostly aimed at calculating over-voltages. Presently, these tools are applied to a myriad of studies (e.g. FACTS and Custom Power applications, protective relay performance, simulation of smart grids) for which detailed models and fast solution methods can be of paramount importance.

This book provides a basic understanding of the main aspects to be considered when performing electromagnetic transients studies, detailing the main applications of present electromagnetic transients (EMT) tools, and discusses new developments for enhanced simulation capability.

Key features:

  • Provides up-to-date information on solution techniques and software capabilities for simulation of electromagnetic transients.
  • Covers key aspects that can expand the capabilities of a transient software tool (e.g. interfacing techniques) or speed up transients simulation (e.g. dynamic model averaging).
  • Applies EMT-type tools to a wide spectrum of studies that range from fast electromagnetic transients to slow electromechanical transients, including power electronic applications, distributed energy resources and protection systems.
  • Illustrates the application of EMT tools to the analysis and simulation of smart grids.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1174

Veröffentlichungsjahr: 2014

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



TRANSIENT ANALYSIS OF POWER SYSTEMS

SOLUTION TECHNIQUES, TOOLS AND APPLICATIONS

Edited by

Juan A. Martinez-Velasco

Universitat Politecnica de CatalunyaBarcelona, Spain

This edition first published 2015 © 2015 John Wiley & Sons, Ltd

Registered officeJohn Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

Library of Congress Cataloging-in-Publication Data

Martinez-Velasco, Juan A.  Transient analysis of power systems : solution techniques, tools, and applications / Dr. Juan A. Martinez-Velasco.    pages cm   Includes bibliographical references and index.  ISBN 978-1-118-35234-2 (hardback)  1. Electric power system stability.  2. Transients (Electricity)–Mathematical models.  I. Title.  TK1010.M37 2014  621.319′21–dc23

2014029300

A catalogue record for this book is available from the British Library.

ISBN: 9781118352342

CONTENTS

Preface

About the Editor

List of Contributors

Chapter 1: Introduction to Electromagnetic Transient Analysis of Power Systems

1.1 Overview

1.2 Scope of the Book

References

Chapter 2: Solution Techniques for Electromagnetic Transients in Power Systems

2.1 Introduction

2.2 Application Field for the Computation of Electromagnetic Transients

2.3 The Main Modules

2.4 Graphical User Interface

2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions

2.6 Control Systems

2.7 Multiphase Load-Flow Solution and Initialization

2.8 Implementation

2.9 Conclusions

References

Chapter 3: Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems

3.1 Introduction

3.2 Frequency Domain Basics

3.3 Discrete-Time Frequency Analysis

3.4 Frequency-Domain Transient Analysis

3.5 Multirate Transient Analysis

3.6 Conclusions

Acknowledgement

References

Chapter 4: Real-Time Simulation Technologies in Engineering

4.1 Introduction

4.2 Model-Based Design and Real-Time Simulation

4.3 General Considerations about Real-Time Simulation

4.4 Phasor-Mode Real-Time Simulation

4.5 Modern Real-Time Simulator Requirements

4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing

4.7 Power Grid Real-Time Simulation Applications

4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications

4.9 Educational System: RPC-Based Study of DFIM Wind Turbine

4.10 Mechatronic Real-Time Simulation Applications

4.11 Conclusion

References

Chapter 5: Calculation of Power System Overvoltages

5.1 Introduction

5.2 Power System Overvoltages

5.3 Temporary Overvoltages

5.4 Switching Overvoltages

5.5 Lightning Overvoltages

5.6 Very Fast Transient Overvoltages in Gas Insulated Substations

5.7 Conclusions

Acknowledgement

References

Chapter Chapter 6: Analysis of FACTS Controllers and their Transient Modelling Techniques

6.1 Introduction

6.2 Theory of Power Flow Control

6.3 Modelling Guidelines

6.4 Modelling of FACTS Controllers

6.5 Simulation Results of a UPFC

6.6 Simulation Results of an ST

6.7 Conclusion

Acknowledgement

References

Chapter 7: Applications of Power Electronic Devices in Distribution Systems

7.1 Introduction

7.2 Modelling of Converter and Filter Structures for CPDs

7.3 Distribution Static Compensator (DSTATCOM)

7.4 Dynamic Voltage Restorer (DVR)

7.5 Unified Power Quality Conditioner (UPQC)

7.6 Voltage Balancing Using DSTATCOM and DVR

7.7 Excess Power Circulation Using CPDs

7.8 Conclusions

References

Chapter 8: Modelling of Electronically Interfaced DER Systems for Transient Analysis

8.1 Introduction

8.2 Generic Electronically Interfaced DER System

8.3 Realization of Different DER Systems

8.4 Transient Analysis of Electronically Interfaced DER Systems

8.5 Examples

8.6 Conclusion

References

Chapter 9: Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters

9.1 Introduction

9.2 MMC Topology

9.3 MMC Models

9.4 Control System

9.5 Model Comparisons

9.6 Real-Time Simulation of MMC Using CPU and FPGA

9.7 Conclusions

References

Chapter 10: Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications

10.1 Introduction

10.2 Front-End Diode Rectifier System Configurations

10.3 Detailed Analysis and Modes of Operation

10.4 Dynamic Average Modelling

10.5 Verification and Comparison of the AVMs

10.6 Generalization to High-Pulse-Count Converters

10.7 Generalization to PWM AC-DC Converters

10.8 Conclusions

Appendix

References

Chapter 11: Protection Systems

11.1 Introduction

11.2 Modelling Guidelines for Power System Components

11.3 Models of Instrument Transformers

11.4 Relay Modelling

11.5 Implementation of Relay Models

11.6 Validation of Relay Models

11.7 Case Studies

11.8 Protection of Distribution Systems

11.9 Conclusions

Acknowledgement

References

Chapter 12: Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges

12.1 Introduction

12.2 Distribution Systems

12.3 Restoration and Reconfiguration of the Smart Grid

12.4 Integration of Distributed Generation

12.5 Overvoltages in Distribution Networks

12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs

Acknowledgement

References

Chapter 13: Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design

13.1 Introduction

13.2 Need for Interfacing

13.3 Interfacing Templates

13.4 Interfacing Implementation Options: External vs Internal Interfaces

13.5 Multiple Interfacing

13.6 Examples of Interfacing

13.7 Design Process Using EMT Simulation Tools

13.8 Conclusions

References

Annex A: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks

A.1 Introduction

A.2 Rational Functions

A.3 Time-Domain Simulation

A.4 Fitting Techniques

A.5 Passivity

A.6 Matrix Fitting Toolbox

A.7 Example A.1: Electrical Circuit

A.8 Example 6.2: High-Frequency Transformer Modelling

References

Annex B: Dynamic System Equivalents

B.1 Introduction

B.2 High-Frequency Equivalents

B.3 Low-Frequency Equivalents

B.4 Wideband Equivalents

B.5 Conclusions

References

Index

End User License Agreement

List of Tables

Chapter 3

Table 3.1

Chapter 5

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Table 5.10

Table 5.11

Table 5.12

Chapter 6

Table 6.1

Chapter 7

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Chapter 8

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Chapter 9

Table 9.1

Table 9.2

Table 9.3

Chapter 10

Table 10.1

Table 10.2

Table 10.3

Table 10.4

Table 10.5

Table 10.6

Table 10.7

Table 10.8

Table 10.9

Table 10.10

Table 10.11

Table 10.12

Table 10.13

Chapter 11

Table 11.1

Chapter 12

Table 12.1

Table 12.2

Table 12.3

Table 12.4

Table 12.5

Table 12.6

Table 12.7

Table 12.8

Table 12.9

Table 12.10

Table 12.11

Table 12.12

Table 12.13

Table 12.14

Table 12.15

Table 12.16

Chapter 13

Algorithm 1

Algorithm 2

List of Illustrations

Chapter 1

Figure 1.1 Simulation of electromagnetic transients in power systems.

Chapter 2

Figure 2.1 Sample 230 kV network simulation presented in a GUI.

Figure 2.2 Ideal transformer model.

Figure 2.3 Discrete solution time-points.

Figure 2.4 Sample nonlinear symmetric function.

Figure 2.5 Two networks separated using the compensation method.

Figure 2.6 Example of control system diagram.

Figure 2.7 Transmission line voltage at the receiving end: with (dashed line) and without (solid line) initialization.

Figure 2.8 Two synchronous machine powers in MW, with (straight lines) and without initialization (oscillations).

Chapter 3

Figure 3.1 Linear time-invariant (LTI) system.

Figure 3.2 Sinusoidal signal representation: (a) real-axis projection of complex exponential signal; (b) sum of two complex conjugate exponential signals.

Figure 3.3 Example of a periodic signal.

Figure 3.4 Periodic signal spectrum: (a) magnitude spectrum; (b) phase angle spectrum.

Figure 3.5 Example 3.1 – Single-phase transmission line excited by periodic signal: (a) transversal geometry; (b) line layout; (c) input waveform.

Figure 3.6 Example 3.1: (a) Fourier series approximation of square wave input signal; (b) output signal as obtained by the Fourier series method.

Figure 3.7 (a) Signal of finite duration

x

(

t

); (b) periodic extension of

x

(

t

).

Figure 3.8 Spectrum of non-periodic signal: (a) magnitude spectrum; (b) phase-angle spectrum.

Figure 3.9 (a) Impulse function; (b) rectangular pulse.

Figure 3.10 Sampling a signal by a train of pulses: (a) continuous-time signal; (b) train of pulses; (c) sampled signal.

Figure 3.11 Effect of sampling on the spectrum of a signal: (a) spectrum of a continuous–time signal; (b) spectrum of a train of pulses; (c) spectrum of sampled signal.

Figure 3.12 (a) Spectrum of band-limited signal; (b) spectrum of sampled band-limited signal.

Figure 3.13 (a) Frequency response

G

(Ω)

o

f low-pass ideal filter. (b) time-domain image of

G

(Ω).

Figure 3.14 Reconstruction of a signal from its samples.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!