Wind Power in Power Systems -  - E-Book

Wind Power in Power Systems E-Book

0,0
130,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: * Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; * Outlines the methodology and results of European and North American large-scale grid integration studies; * Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; * Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; * Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 2105

Veröffentlichungsjahr: 2012

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Title Page

Copyright

Dedication

Contributors

Abbreviations

Notation

Chapter 1: Introduction

Chapter 2: Preface: Wind Power Myths Debunked

2.1 Can Grid Operators Deal with the Variability of Wind Power?

2.2 Does Wind Power Require Back-up Generation?

2.3 Aren't More CO2 Emissions Generated with Wind Power in Power Systems than Without, Due to Back-up Requirements?

2.4 Does Wind Power Require Storage?2

2.5 Isn't the Existing Flexibility Already Fully Utilized?

2.6 How Often Does the Wind Stop Blowing Everywhere at the Same Time?

2.7 To What Extent can Wind Power Production be Predicted?7

2.8 Is it Expensive to Integrate Wind?

2.9 Doesn't Wind Power Production Require New Transmission, and won't that Make Wind Expensive?10

2.10 Does Wind Power have Capacity Credit?

2.11 Don't Wind Power Plants have Low Capacity Factors?

2.12 Is Wind Power Generation Cost-competitive with Coal or Nuclear?

2.13 Is there a Limit to How Much Wind Generation Capacity can be Accommodated by the Grid?

2.14 Summary

Acknowledgment

References

Part A : Theoretical Background

Chapter 3: Historical Development and Current Status of Wind Power

3.1 Introduction

3.2 Historical Background

3.3 Current Status of Wind Power Worldwide

3.4 Status of Wind Turbine Technology

3.5 Conclusions

Acknowledgments

References

Chapter 4: Wind Power in Power Systems: An Introduction

4.1 Introduction

4.2 Power System History

4.3 Current Status of Wind Power in Power Systems

4.4 Network Integration Issues for Wind Power

4.5 Basic Electrical Engineering

4.6 Characteristics of Wind Power Generation

4.7 Basic Integration Issues Related to Wind Power

4.8 Conclusions

AppendixMechanical Equivalent to Power System Operation with Wind Power

A.1 Introduction

A.2 Active Power Balance

A.3 Synchronous Machines

A.4 Asynchronous Machines

A.5 Power Electronic Interfaces

A.6 Frequency Control

A.7 Wind Power

A.8 Reactive Power Balance

A.9 Asynchronous Machines

A.10 Capacitors

A.11 Synchronous Machines

A.12 Power Electronic Interfaces

References

Chapter 5: Generators and Power Electronics for Wind Turbines

5.1 Introduction

5.2 State-of-the-Art Technologies

5.3 Generator Concepts

5.4 Power Electronic Concepts

5.5 Power Electronic Solutions in Wind Farms

5.6 Conclusions

References

Chapter 6: Power System Impacts of Wind Power

6.1 Introduction

6.2 Operation of the Power System

6.3 Wind Power Production and the Power System

6.4 Effects of Wind Energy on the Power System

6.5 Conclusions

References

Chapter 7: The Value of Wind Power

7.1 Introduction

7.2 The Value of a Power Plant

7.3 The Value of Wind Power

7.4 The Market Value of Wind Power

7.5 Conclusions

References

Part B : Technical Regulations and Grid Code Validation

Chapter 8: Power Quality Standards for Wind Turbines

8.1 Introduction

8.2 Power Quality Characteristics of Wind Turbines

8.3 Impact on Voltage Quality

8.4 Discussion

8.5 Conclusion

References

Chapter 9: Measurement of Electrical Characteristics

9.1 Introduction

9.2 Power Quality Measurement Procedures

9.3 Specification

9.4 Conclusions

References

Chapter 10: Practical Experience with Power Quality and Wind Power

10.1 Introduction

10.2 Voltage Variations

10.3 Flicker

10.4 Harmonics

10.5 Transients

10.6 Frequency

10.7 Conclusions

References

Chapter 11: Technical Regulations for the Interconnection of Wind Power Plants to the Power System

11.1 Introduction

11.2 Overview of Technical Regulations

11.3 Comparison of Technical Interconnection Regulations

11.4 New Interconnection Requirements at Wind Plant Level

11.5 Interconnection Practice

11.6 Conclusions

References

Chapter 12: Performance Validation and Certification for Grid Codes

12.1 Introduction

12.2 History of the Certification Process

12.3 Steps of the Unit Certification Process

12.4 Steps in the Plant Certification Process

12.5 Experience with the Certification Process in Germany

12.6 Performance Validation in Canada and Spain

12.7 Conclusions

References

Part C : Wind Power Plant and Transmission Issues

Chapter 13: Electrical Design of a Wind Power Plant

13.1 Introduction

13.2 Wind Plant Collection System Design Objectives

13.3 Wind Plant Performance Requirements

13.4 Economic Evaluation Factors

13.5 Collection System Electrical Design

13.6 Plant Control and Communication

References

Chapter 14: Transmission Systems for Offshore Wind Power Plants and Operation Planning Strategies for Offshore Power Systems

14.1 Introduction

14.2 General Electrical Aspects

14.3 Transmission System to Shore

14.4 From a Cluster Approach to Offshore Transmission Grid: The Kriegers Flak Project

14.5 Offshore Grid Systems

14.6 New System Solutions for Offshore Wind Power Plants

14.7 Alternative Transmission Solutions

14.8 Conclusions

References

Chapter 15: New Cable Systems for Offshore Wind Power Plants

15.1 Introduction

15.2 Technical Background

15.3 Power Transmission with Bipolar HVAC Cable Systems

15.4 Voltage Definitions and Transformer Groups

15.5 Submarine Cable Connections

15.6 Examples

15.7 HVAC Bipolar Land Cable Systems

15.8 Summary

References

Chapter 16: New Control Concept for Offshore Wind Power Plants: Constant-Speed Turbines on a Grid with Variable Frequency

16.1 Introduction

16.2 Model

16.3 Power Limitation

16.4 The Park-Variable Concept

16.5 Calculating the Energy Yield

16.6 Results

16.7 Conclusion

References

Part D : International Studies

Chapter 17: Overview of Integration Studies – Methodologies and Results

17.1 Introduction

17.2 Wind Integration Study Set-up and Penetration Level of Wind Power

17.3 Methodologies for Wind Integration Studies

17.4 Results from Integration Studies

17.5 Recommendations

17.6 Conclusions and Future Work

References

Chapter 18: Two Reference Studies on European Transmission for Wind Integration: TradeWind and EWIS

18.1 Introduction

18.2 TradeWind

18.3 The European Wind Integration Study EWIS

18.4 Future Transmission Needs in Europe from the Studies

18.5 Concluding Remarks

Acknowledgments

References

Chapter 19: Transmission Planning for Wind Energy in the USA: Status and Prospects

19.1 Introduction

19.2 Transmission Planning for Energy Resources

19.3 Regional Planning Efforts: Status and Prospects

19.4 National Transmission Policy

19.5 Summary and Conclusions

Acknowledgments

References

Chapter 20: Wind Power in Areas with Limited Transmission Capacity

20.1 Introduction

20.2 Transmission Limits

20.3 Transmission Capacity: Methods of Determination

20.4 Measures to Increase Transmission Capacity

20.5 Impact of Wind Generation on Available Transmission Capacity

20.6 Alternatives to Grid Reinforcement for the Integration of Wind Power

20.7 Conclusions

References

Chapter 21: Wind Power and Storage

21.1 Introduction

21.2 Storage Technologies

21.3 Storage for Wind Integration

21.4 Studies on Operation of Storage in Systems with High Wind Penetration

21.5 Discussion

21.6 Conclusions

References

Chapter 22: Economic Aspects of Wind Power in Power Systems

22.1 Introduction

22.2 Costs for Network Connection and Network Upgrading

22.3 System Operation Costs in a Deregulated Market

22.4 Example of Nord Pool

22.5 Conclusions

References

Part E : Power System Integration Experience

Chapter 23: Wind Power in the Danish Power System

23.1 Introduction

23.2 System Overview

23.3 Balancing Wind Power in Daily Operation

23.4 System Analysis and Modelling Issues

23.5 Conclusions and Lessons Learned

References

Chapter 24: Wind Power in the German Network: Present Status and Future Challenges of Maintaining Quality of Supply

24.1 Overview

24.2 Wind Power Integration in Germany

24.3 Wind Power Flow Patterns and Reliable System Operation

24.4 Network Planning and Network Security Issues

24.5 System Performance and System Compliance

24.6 Requirements to Ensure System Security

24.7 Summary: Wind Power in the German Network

Acknowledgments

References

Chapter 25: Wind Integration in Portugal

25.1 Introduction

25.2 The Portuguese Power System

25.3 Planning the Power System for High Wind Penetration

25.4 Power System Studies for a Secure Integration of Wind Generation

25.5 Operational Experience of Extreme Penetration of Wind Power in Portugal

25.6 Synthesis

References

Chapter 26: Wind Power Integration Experience in Spain

26.1 Introduction

26.2 Wind Capacity in Spain

26.3 Network Arrangements for Wind Power Development

26.4 Technical Requirements for Massive Wind Power Integration

26.5 Market Arrangements for Wind Power Integration

26.6 Operational Arrangements for Wind Power Integration

26.7 Future Challenges Associated with Wind Power Integration

26.8 Conclusions and Lessons Learned

References

Chapter 27: Maximizing Renewable Generation on the Power System of Ireland and Northern Ireland

27.1 Introduction

27.2 The Ireland and Northern Ireland Power System

27.3 Deregulation and the First European Energy Package

27.4 The Development of Renewable Policy 2020 Targets and Beyond

27.5 Operational Studies

27.6 Impact on the Operation of the Power System

27.7 Programme for a Secure, Sustainable Power System

27.8 Conclusion

References

Chapter 28: Wind Power in the Power System in Texas

28.1 Overview

28.2 Wind Development in Texas

28.3 Wind Integration Issues

28.4 Market Impacts

28.5 Lessons Learned

28.6 Next Steps

Chapter 29: Wind Power in the New Zealand Power System

29.1 Introduction

29.2 Overview of the New Zealand Power System

29.3 Overview of Wind Power Installations in New Zealand

29.4 Technology Progression

29.5 Case Study: West Wind Wind Farm

29.6 Case Study: White Hill Wind Farm

29.7 Future Challenges and the Next Steps

29.8 Conclusion

References

Chapter 30: Large-Scale Wind Power Integration into the Chinese Power System

30.1 Introduction

30.2 Grid Integration Impact of High Wind Power Penetration

30.3 Solutions for the Grid Integration of Large-scale Wind Power

30.4 Grid Compliance Testing Technology

30.5 Smart Grid and Wind Power in China

30.6 Conclusions

References

Chapter 31: Isolated Systems with Wind Power

31.1 Introduction

31.2 Isolated Power Systems

31.3 Detailed Overview of Wind–Diesel Power Systems

31.4 Systems and Experience

31.5 Wind Power Impact on Power Quality

31.6 System Modelling Requirements

31.7 Issues During the Application of Wind–Diesel Systems

31.8 Conclusions and Recommendations

References

Chapter 32: Wind Farms in Weak Power Networks in India

32.1 Introduction

32.2 Network Characteristics

32.3 Wind Turbine Characteristics

32.4 Wind Turbine Influence on Grids

32.5 Grid Influence on Wind Turbines

32.6 Conclusions

References

Chapter 33: Wind Power Prediction

33.1 Introduction

33.2 Forecast Horizons

33.3 Principle of Wind Power Prediction Tools

33.4 Day-Ahead Prediction

33.5 Ensemble Forecast Models/Combination of Forecast Models

33.6 Nowcasting and Ramp Forecasting

33.7 Forecast Error Evaluation

33.8 Lessons Learned during Recent Years

33.9 Future Challenges

References

Part F : Dynamic Modelling of Wind Turbines for Power System Studies

Chapter 34: Introduction to the Modelling of Wind Turbines

34.1 Introduction

34.2 Basic Considerations Regarding Modelling and Simulations

34.3 Overview of Aerodynamic Modelling

34.4 Basic Modelling Block Description of Wind Turbines

34.5 Per Unit Systems and Data for the Mechanical System

34.6 Different Types of Simulations and Requirements for Accuracy

34.7 Conclusions

References

Chapter 35: A Generic Wind Power Plant Model

35.1 Introduction

35.2 Power Flow Representation and Equivalencing

35.3 WECC Generic Dynamic Models

35.4 Generic Model Validation

35.5 Known Issues and Areas of Improvement

35.6 Outlook

References

Chapter 36: Reduced-Order Modelling of Wind Turbines

36.1 Introduction

36.2 Power System Dynamics Simulation

36.3 Current Wind Turbine Types

36.4 Modelling Assumptions

36.5 Model of a Constant-Speed Wind Turbine

36.6 Model of a Wind Turbine with a Doubly Fed Induction Generator

36.7 Model of a Wind Turbine with a Synchronous Generator

36.8 Model Response

36.9 Conclusions

References

Chapter 37: High-Order Models of Doubly Fed Induction Generators

37.1 Introduction

37.2 Advantages of Using a Doubly Fed Induction Generator

37.3 The Components of a Doubly Fed Induction Generator

37.4 Machine Equations

37.5 Voltage-Source Converter

37.6 Sequencer

37.7 Simulation of the Doubly Fed Induction Generator

37.8 Reducing the Order of the Doubly Fed Induction Generator

37.9 Conclusions

References

Chapter 38: Full-Scale Verification of Dynamic Wind Turbine Models

38.1 Introduction

38.2 General Validation Procedure

38.3 Measured Parameters and Conversion

38.4 Validation Types

38.5 Further Validation Specifications

38.6 Conclusions

References

Chapter 39: Impacts of Wind Power on Power System Stability

39.1 Power System Stability and Security

39.2 Rotor Angle Stability

39.3 Voltage Stability

39.4 Frequency Stability

39.5 Dynamic Behaviour of Wind Power Plants

39.6 Conclusions

References

Chapter 40: Modelling of Large Wind Power Plants

40.1 Introduction

40.2 Detailed Modelling and Short-Term Stability

40.3 Aggregated Modelling and Fault Ride-Through

40.4 Wind Power Plant Controllers

40.5 Conclusions

References

Part G : Future Issues

Chapter 41: Benefits of Active Management of Distribution Systems

41.1 Background

41.2 Active Management

41.3 Quantifying the Benefits of Active Management

41.4 Conclusions

References

Chapter 42: Wind Power and the Smart Grid

42.1 Introduction

42.2 (Trying to) Define Smart Grids

42.3 Why ‘Smarten’ the Grid? And Why Now (or Why Not)?

42.4 Goals and Concepts

42.5 Wind Power and Smart Grids

42.6 Practical Application: The Danish Cell Controller Pilot Project

42.7 Conclusions

Acknowledgments

References

Chapter 43: Reactive Power Capability and Voltage Control with Wind Turbines

43.1 Relevance and Design Paradigm

43.2 Reactive Power Capability of a Wind Turbine

43.3 Model-Based Design of Voltage Control Systems for Wind Power Plants

43.4 Performance Demonstration, Model Validation and Contingency Tests

43.5 Voltage Control of Medium-Voltage Network

Reference

Chapter 44: Hydrogen as a Means of Transporting and Balancing Wind Power Production

44.1 Introduction

44.2 A Brief Introduction to Hydrogen

44.3 Technology and Efficiency

44.4 Reconversion to Electricity: Fuel Cells

44.5 The Potential of Hydrogen in Wind Energy Storage

44.6 Hydrogen Applications for Wind Energy Storage

44.7 A Blueprint for a Hydrogen Distribution System

44.8 Conclusions

Acknowledgments

References

Color Plate

Index

This edition first published 2012

© 2012, John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data:

Wind power in power systems / edited by Thomas Ackermann. — 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-97416-2 (hardback)

1. Wind power plants. 2. Wind power. I. Ackermann, Thomas.

TK1541.W558 2012

621.31'2136—dc23

2011050039

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470974162

To Moana, Jonas and Nora

Contributors

Thomas Ackermann ([email protected]) is the CEO and founding partner of Energynautics, a German-based research and consulting company in the area of sustainable energy supply and power systems. He has worked in the wind energy and power system industry in Germany, Sweden, China, USA, New Zealand, Australia, Denmark and India. He is also lecturer at the Royal University of Technology (KTH) in Stockholm, Sweden as well as at the Technical University in Darmstadt (TUD), Germany. He is also the main organizer of the annual wind and solar integration workshop (http://www.windintegrationworkshop.org/). Furthermore, he is also involved in various lectures for the power system industry as well as for developing countries in the area of integration of renewable into power systems. He has the degree of a Diplom Wirtschaftsingenieur (MSc in mechanical engineering combined with an MBA) from the Technical University Berlin, Germany, an MSc in Physics from Dunedin University, New Zealand, and a PhD from the Royal University of Technology in Stockholm, Sweden.

(a) 400 kV cable links in Berlin, one with forced cooling, the other links in deep tunnels with natural cooling and with forced convection cooling; (b) 400 kV XLPE cable links in Vienna with rating problems of cables and joints as well as EMF problems; (c) 220 kV cable link with extreme EMC requirements in Lübeck, as well as multiple grid connection projects of offshore windfarms.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!