Erhard Weigels Philosophie - Rainer Specht - E-Book

Erhard Weigels Philosophie E-Book

Rainer Specht

0,0

Beschreibung

Erhard Weigel (1625–1699) war zu Lebzeiten ein in ganz Europa berühmter Mathematiker, Astronom, Physiker, Pädagoge, Philosoph und Erfinder und steht seit mehreren Jahren wieder zunehmend im Blickpunkt wissenschaftshistorischer Forschung. Der Lehrer von Leibniz, der in der zweiten Hälfte des 17. Jahrhunderts an der Universität Jena lehrte, war eine zentrale Persönlichkeit der Wissenschaft der frühen Neuzeit. Weigels visionäres und manchmal urtümlich wirkendes Vorhaben, nicht nur die Naturwissenschaften, sondern auch das, was wir heute als Geisteswissenschaften bezeichnen, zu quantifizierender Forschung anzutreiben, seine pädagogischen Versuche, seine Bemühungen um die Verbesserung des allgemeinen, gewerblichen und technischen Bildungswesens im Reich und seine Anstrengungen zur Kalenderreform werden in dieser Einführung gut lesbar dargestellt. Die Heterogenität von Weigels Werk erschwert den Zugriff und hat eine umfangreiche Forschung bisher behindert; umso wichtiger ist diese erste Gesamtdarstellung. Rainer Specht und Wolfgang Detel gehen in zwölf übersichtlichen Abschnitten neben einer biographischen Skizze auf Weigels Pädagogik, seine Erkenntnistheorie, Mathematik und Wissenschaftstheorie ein sowie auf das Erbe Aristoteles' und Euklids, Weigels Werttheorie und seine Logik. Der Band schließt mit einer Darstellung von Weigels Enzyklopädie-Projekten und seinem Versuch, eine Gesamtwissenschaft in Gestalt einer »mathesis universalis« zu begründen.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern
Kindle™-E-Readern
(für ausgewählte Pakete)

Seitenzahl: 491

Veröffentlichungsjahr: 2023

Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:

Android
iOS
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Rainer Specht

Erhard Weigels Philosophie

Denken und Werk eines Lehrers von Leibniz und Pufendorf

Mit zwei Beiträgen von Wolfgang Detel

Meiner

Bibliographische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über ‹http://portal.dnb.de› abrufbar.

eISBN (PDF) 978-3-7873-4401-7

eISBN (ePub) 978-3-7873-4457-4

© Felix Meiner Verlag Hamburg 2023. Alle Rechte vorbehalten. Dies gilt auch für Vervielfältigungen, Übertragungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen, soweit es nicht §§ 53, 54 UrhG ausdrücklich gestatten. Konvertierung: Bookwire GmbHwww.meiner.de

Für Links mit Verweisen auf Webseiten Dritter übernimmt der Verlag keine inhaltliche Haftung. Zudem behält er sich die Verwertung der urheberrechtlich geschützten Inhalte dieses Werkes für Zwecke des Text- und Data-Minings (§ 44 b UrhG) vor. Jegliche unbefugte Nutzung ist hiermit ausgeschlossen.

INHALT

Zur Zitierweise bei Weigel-Texten

1. Einleitung

Zur Forschungslage

Biographische Skizze

2. Weigels Pädagogik

Wiedereinführung der Mathematik und der Realienfächer an den Schulen

Lernen ist Spielen mit der göttlichen Weisheit

Die Kunst- und Tugendschule

3. Denominative und ästimative Erkenntnis

Zwei Stufen der Erkenntnis

Implikationen der ästimativen Erkenntnis

Schwierigkeiten mit Weigelschen Werten

Implikationen des Übergangs zum ästimativen Verfahren

4. Das pythagoreische Erbe

Pythagoreische Prägung

Zählen und Rechnen

Rechnen und Mathematik

Jedes Ding hat seine Quantität

5. Das Erbe Aristoteles’ und Euklids

Zur Ausgangslage

Erläuterung des Begriffs »Syllogismus« (Beitrag von Wolfgang Detel)

Der Konflikt aus Anlass der Analysis aristotelica

Skizze der Wissenschaftslehre der Analysis aristotelica

Weigels erste Maßnahme zur Erneuerung des Aristotelismus: Neueinschätzung von Artefakten

Weigels zweite Maßnahme zur Erneuerung des Aristotelismus: korpuskularistische Erklärungen

6. Weigel und die aristotelische Wissenschaftstheorie(Beitrag von Wolfgang Detel)

7. Denominative Lehre von der Konstitution der Dinge

Materie und Form

Denominative Wesenserkenntnis

Das wahre Wesen kann man nur ästimativ erfassen

8. Erschaffung und Erhaltung der Welt

Nichts und Etwas

Schöpfung

Erhaltung der Welt

Zeit und Dauer

9. Okkasionalismus

Zusammenspiel von Gott und Geschöpfen

Weigels Okkasionalismus

Umgang mit Mitteln

10. Imposition und Werte

Imposition

Klassen von Werten

Körperliche Werte

Weigels Physik

Notionale Werte

Moralische Werte

Bürgerliche Werte

Ontologischer Status von Werten

Samuel Pufendorf über moralische Entitäten

11. Topische Logik

Aristotelische Topik

Lullische Kunst

Das Lullische Werkzeug

Petrus Ramus. Topische Logik

12. Alsteds und Comenius’ Enzyklopädien

Alsteds Enzyklopädie von 1630

Johann Amos Comenius’ Enzyklopädie

Comenius’ Pansophiae Prodromus

13. Weigels Enzyklopädie-Projekte

Die Analysis aristotelica als Compendium einer Enzyklopädie

Weigels Versuch einer Gesamtwissenschaft in Gestalt einer Mathesis universalis

Weigels Versuch einer pansophischen Enzyklopädie

Anmerkungen

Verzeichnis der verwendeten Literatur

Zeitgenössische Drucke von Werken Weigels

Schülings Sammlung pädagogischer Schriften Weigels

Die neue Werkausgabe

Ältere Literatur

Literatur ab 1900

Ressourcen der Erhard-Weigel-Gesellschaft

Personenregister

Sachregister

Dank

Unserem LehrerCarl Friedrich Freiherr von Weizsäcker gewidmet

Zur Zitierweise bei Weigel-Texten

Für Leser, die keinen Zugang zu der neuen Ausgabe philosophischer Schriften Weigels (B-Ausgabe) haben und deshalb den Text in den im Internet erreichbaren Digitalisaten alter Weigel-Drucke einsehen möchten, nenne ich bei Zitaten in der Regel die in der B-Ausgabe nicht vermerkte Seitennummer meines Digitalisats. Das genügt meistens zusammen mit den Angaben zu Teil, Abschnitt, Kapitel und Paragraph zur Orientierung.

Manchmal verfahren aber Weigels Drucker bei Paginierung und Paragraphenzählung nicht sorgfältig, auch beginnen in einigen Ausgaben mitten im Band Neupaginierungen, durch die Angaben wie »S. 23« uneindeutig werden. Dann sind Suchbefehle hilfreich, sofern das Digitalisat sie zulässt. Für alle Fälle gebe ich außer der Seitennummer des Altdrucks die PDF-Seitennummer meines Digitalisats an. Auch das führt aber nicht unbedingt zu eindeutigen Informationen. Die Digitalisate zählen nämlich in der Regel auch Leerseiten mit, die der Buchbinder der Vorlage je nach Wohlgefallen oder Kundenwunsch vor der Titelseite eingeschossen hat. Verschiedene Digitalisierungen von Exemplaren derselben Auflage können also verschiedene PDF-Paginierungen haben. Dann helfen Suchbefehle, sofern das Digitalisat sie zulässt. In anderen Fällen hilft die Berücksichtigung der Differenz zwischen der Anzahl der vor der Titelseite meines Digitalisats und der Anzahl der vor der Titelseite des Leser-Digitalisats eingeschossenen Leerseiten. Soweit ich sehe, gibt es keine bequemere Lösung.

Angesichts dieser Sachlage sehen meine Zitierungen von Weigel-Stellen schlimmstenfalls so aus: »Tugendspiegel, Der Grund, obs. 4, coroll. 4; 30 f. / PDF 263 f. | B5.1, 161 f.« Zu beachten sind dabei die Trennzeichen »;« »/« und »|«. Auf »;« folgt die Seitennummer des Altdrucks, auf »/« die PDF-Seitennummer meines Digitalisats und auf »|« die Seitennummer der Neuausgabe. Die Zitate haben also die Form: »;« Seitennummer des Altdrucks / Seitennummer meines Digitalisats | Seitennummer der B-Ausgabe.«

1. Einleitung

Zur Forschungslage

Erhard Weigel ist in Deutschland nicht sehr bekannt. Seine auf Deutsch geschriebenen Werke werden als schwierig empfunden, weil sie in der Morgenfrühe der modernen deutschen Wissenschaftssprache entstanden sind, und seine lateinischen Texte sind in einem Latein verfasst, das dem heute kaum mehr geschätzten Schullatein nahesteht. Seit Ende des vorigen Jahrhunderts hat sich jedoch das Interesse an diesem Autor belebt. Sein visionäres und manchmal urtümlich und gewaltsam wirkendes Vorhaben, nicht nur die Naturwissenschaften, sondern auch das, was wir heute als Geisteswissenschaften bezeichnen, zu quantifizierender Forschung anzutreiben, seine pädagogischen Versuche, seine Bemühungen um die Verbesserung des allgemeinen, gewerblichen und technischen Bildungswesens im Reich und seine Anstrengungen zur Behebung der Komplikationen, zu denen das Nebeneinander protestantischer (julianischer) und römisch-katholischer (gregorianischer) Datierungen führte, werden mit Respekt zur Kenntnis genommen, sobald sie aus der Vergessenheit auftauchen.

Die bis vor kurzem maßgebliche Bibliographie gedruckter Werke Weigels von Hermann Schüling erschien 1970 in Gießen.1 Schüling ergänzte seine chronologisch nummerierte Auflistung von Weigels philosophischen Schriften (S. 8–61) durch ein Verzeichnis kleinerer Gelegenheitsarbeiten (Dissertationen, Grabreden, Gedichte usw., S. 67–71). Bei der Vorbereitung durchsuchte er 44 in- und ausländische Bibliothekskataloge, überprüfte die älteren Weigel-Bibliographien und listete die infolge von Kriegsverlusten nicht mehr nachweisbaren Titel auf (S. 82–85). Weigelsche Manuskripte wurden nicht aufgenommen, doch findet man Hinweise auf mögliche Fundorte (S. 86–87). Die Sekundärliteratur wurde in zwei Gruppen erfasst: Schrifttum des 17. und 18. Jahrhunderts und Schrifttum des 19. und 20. Jahrhunderts (S. 98–102); die Nennungen enden mit Voisés Rezension der Arbeit von Hildegart Schlee über Weigels süddeutschen Schülerkreis und mit Wolfgang Röds Aufsatz über Weigels Lehre von den Entia moralia. Zur Erleichterung von Suchvorgängen tragen Hilfsmittel bei: Alphabetisches Verzeichnis der im Hauptteil chronologisch geordneten Titel (S. 103–109), Verzeichnis der Adressaten von Weigels Widmungen und Vorreden (S. 112–113) und Verzeichnis von Weigel übernommener Texte anderer Autoren (S. 114). Viele Veröffentlichungen Weigels sind Hochschulschriften; dem trägt Schülings Respondentenliste (S. 110 f.) Rechnung, die Vorarbeiten von Hildegart Schlee berücksichtigt. Die Bibliographie wurde durch weitere Materialien ergänzt: biographische Skizze (S. 118–121), Abgrenzung von Weigels Schaffensperioden (S. 122–124), Tabelle zur zeitlichen Verteilung der Schriften unter Berücksichtigung der Sachgebiete (S. 124–125).

Mehr als dreißig Jahre später erschien Konrad Molls Darstellung von Erhard Weigels Philosophie im Grundriss der Geschichte der Philosophie2 mit Bibliographien zu Weigels philosophischen und philosophienahen Schriften (210 Titel; S. 948–951) und zur Sekundärliteratur (71 Titel; S. 987–989); das zweite Verzeichnis ist in Biographien (letzte Nennung: 1970), Methodologie, Natur- und Moralphilosophie (letzte Nennung: 1978), Anthropologie, Pädagogik, Bildungs- und Schulreform (letzte Nennung: 1971) und Mathematik, Astronomie und Technik (letzte Nennung: 1983) unterteilt. Die Darstellung berücksichtigt neue Erkenntnisse und nicht zuletzt Ergebnisse der Forschungen Molls über das Verhältnis der Philosophie des jungen Leibniz zu der Weigels, mit denen er sich in den siebziger Jahren als Kenner dieses Zweigs der Weigel- und Leibniz-Forschung ausgewiesen hatte.

Seit 2003 erscheint eine von Thomas Behme besorgte Neuausgabe ausgewählter Werke Weigels,3 die inzwischen auf sieben Bände angewachsen ist. Es handelt sich nicht um editorisch begleitete fotomechanische Neudrucke, sondern um neu gesetzte lateinische und teils aus Fraktur in Antiqua transkribierte Texte. Solche Transkriptionen empfehlen sich grundsätzlich, denn deutsche Leser zeigen wenig Neigung, das Lesen kurrenthandschriftlicher Texte und deutscher Frakturdrucke zu lernen. Dadurch wird ein beträchtlicher Teil der deutschen Überlieferung bis zu der Zeit, als Adolf Hitler im Blick auf das geplante Großreich die deutschen Schreib- und Druckgepflogenheiten europäisieren ließ, also bis zu Anfang der vierziger Jahre des 20. Jahrhunderts, für sie unzugänglich. Hinzu kommt, dass Weigel, der viel publizierte, anscheinend preiswerte Druckverfahren vorzog; deshalb ist die Qualität mancher alter Drucke seiner Schriften nicht gut (es gibt auch Ausnahmen, zum Beispiel das schöne Druckbild der Analysis aristotelica). Einige der weniger gepflegten Originaldrucke enthalten außer Autor- und Druckerfehlern und fehlerhaften Nummerierungen auch Druckerschwärze-Verschmierungen; die Entzifferung befallener Stellen bereitet manchmal Schwierigkeiten.

Es ist ein Problem bei Editionen, die mit Transkriptionen und namentlich mit Fraktur-Antiqua-Transkriptionen arbeiten, dass sie viel Zeit verschlingen. Ein spezieller Zweig der OCR, die Frakturerkennung, ist noch nicht so ausgereift, dass ihn auch Nichtfachleute sicher nutzen können. Inzwischen erfordern solche Unternehmungen noch mühselige Schreibarbeiten und aufwendige Korrekturen. Erst danach kann man die üblichen Editionsaufgaben in Angriff nehmen, die bei Texten aus fremd gewordenen Epochen ohnehin aufwendig sind. Für alle diese Arbeiten war bei der Weigel-Ausgabe nur eine einzige Person vorgesehen, der keine Hilfskräfte zur Verfügung standen. Was unter diesen Umständen erreicht wurde, ist bemerkenswert. Es gibt jetzt gut und angenehm lesbare Texte auch abgelegener Schriften Weigels mit schönem Druckbild und solider Ausstattung. Seit Band 5 sind elektronische Versionen der Buchausgaben verfügbar, die Suchbefehle zulassen und dadurch manchen Arbeitsschritt erleichtern. Die Texte wurden schon von vielen Fehlern und Fehlpaginierungen bereinigt, auch wurden entstellte Texte umstrukturiert und dringliche Konjekturen eingefügt. Es handelt sich noch nicht um eine definitive Edition, aber das ist ohne eine ungleich bessere Personalausstattung auch nicht zu erwarten. Einen ansehnlichen Teil der Vorarbeiten hat der Herausgeber der Neuausgabe schon in Ein-Mann-Arbeit erledigt. Seine Einleitungen, die Zusammenhänge des Weigelschen Denkens und seiner Entwicklung unter Verweis auf ältere und spätere Phänomene der deutschen und europäischen Literatur herausarbeiten, erleichtern heutigen Lesern den Zugang. Die Sachkommentare bestehen aus Anmerkungen zu Textstellen mit Hinweisen auf einschlägige Überlieferungen, personelle Zusammenhänge und vergleichbare zeitgenössische Phänomene, die auch Fachleute mit hilfreichen Informationen versehen.

Ein Handicap der schönen Ausgabe ist ihr hoher Preis, den vermutlich nur wenige Privatpersonen aufbringen mögen; die Bände und die zugehörigen PDF-Dateien werden allerdings, wie es inzwischen üblich ist, in der Regel nur von thematisch zuständigen öffentlichen Bibliotheken angeschafft. Wer deren Präsenzbestände oder die elektronischen Fassungen nicht nutzen kann, hat kaum Chancen, über die Fernleihe Originaldrucke zu bekommen oder Bände der Neuausgabe lange genug behalten zu dürfen. Wer sich intensiv mit Weigel beschäftigen möchte, braucht aber dauerhaften Zugriff auf die Texte. Dieser bereitet erfreulicherweise seit Jahren keine unüberwindlichen Probleme mehr, denn zu den meisten Originaldrucken liegen öffentlich zugängliche Digitalisate vor. Wer sie benutzt, kommt mit gelegentlichen Kontrollen seiner Interpretationen an der Neuausgabe aus, die sich auch unter den gegenwärtigen Bedingungen realisieren lassen.

Seit 1999 informieren Tagungsbände, die den Text der meisten bei den Kolloquien der Erhard-Weigel-Gesellschaft gehaltenen Vorträge publizieren, über das breite Spektrum aktueller Bemühungen. In den vergangenen zwanzig Jahren ist es der Gesellschaft gelungen, zur Erleichterung von Weigelforschungen eine breite elektronische Infrastruktur aufzubauen, die über die Website der Erhard-Weigel-Gesellschaft erreichbar ist.4 Damit »ist ein organisatorischer Rahmen geschaffen worden, der die Beschäftigung mit diesem vielseitigen Gelehrten auch außerhalb universitärer Projekte ermöglichen soll«5 und der vermutlich beträchtlichen privaten Einsatz und Arbeitsaufwand erfordert hat. Namen der an den Arbeiten Beteiligten werden nicht genannt. Es handelt sich u. a. um ein fortlaufend aktualisiertes Verzeichnis von Weigels erhaltener Korrespondenz, eine fortlaufend aktualisierte Bibliographie von Weigels Schriften, ein fortlaufend aktualisiertes Verzeichnis der Sekundärliteratur, eine Liste der Hörer Weigels und eine Auflistung von Weigels Himmelsgloben. Hier ist ein komfortabler Apparat von Hilfsmitteln entstanden, der die Arbeit beträchtlich erleichtern kann.

Bei der neueren Sekundärliteratur handelt es sich fast nur um Detailuntersuchungen, und das ist beim gegenwärtigen Stand der Forschung wohl auch angemessen. Neuere ausführliche Untersuchungen zu Weigels Arbeiten auf bestimmten Fachgebieten gibt es bislang vor allem im Bereich der Pädagogik und Astronomie. Auf der Website der Erhard-Weigel-Gesellschaft wird unter anderem auf das Fehlen einer Darstellung der Kunst- und Tugendschule auf der Grundlage der handschriftlichen Quellen hingewiesen, ferner auf das Ausstehen einer abschließende Darstellung der Grundlagen von Weigels spezifischer Pansophie und auf das Fehlen einer ausführlichen technikgeschichtlichen Darstellung von Weigels Erfindungen auf der Grundlage handschriftlicher Quellen.6 Angesichts der Desiderate ist mit einer umfassenden Darstellung von Weigels Gesamtwerk in absehbarer Zeit kaum zu rechnen.

Biographische Skizze

Erhard Weigel wurde am 16. Dezember 1625 in Weiden als Sohn eines Tuchmachers geboren. Zwei Jahre später besetzten kaiserliche Truppen die Oberpfalz. Bekehrungsunwillige mussten die Stadt verlassen, und zwar vermutlich, wie die Bedürftigkeit der Familie in der neuen Heimat vermuten lässt, im Widerspruch zum geltenden Recht ohne Besitz.7 Die Stadt Weiden war mit den Rekatholisierungsmaßnahmen der Besatzungsmacht anscheinend nicht glücklich; sie schickte dem Migrantenkind Erhard Weigel noch viele Jahre später aus Anlass seiner Promotion zum Magister ein Ehrengeld, und der damalige Landesherr ernannte Weigel (wiederum viele Jahre später) zum Pfalz-Sulzbachischen Rat. Die Wanderung der Familie endete in Wunsiedel. Dort fand der Vater zwar kein Auskommen als Tuchmacher, aber die Stadt bot ihm wegen seiner guten Schulbildung die Lehrerstelle an der deutschen Schule an, während sein Sohn die örtliche Lateinschule besuchte. Der Junge Erhard trug durch Schreib- und Kopierarbeiten und durch Erteilung von Nachhilfestunden zu dem knappen Familieneinkommen bei. Weil es an seiner Lateinschule wie an den meisten damaligen Gymnasien keinen Unterricht in Rechnen gab, lernte er bei seinem Vater die einfachen Rechenoperationen und das Einmaleins. Der Vater starb 1636, die Mutter übernahm die Lehrerstelle, und der elfjährige Erhard half in der Schule aus. Von 1644–1646 wechselte er an das Lutherische Gymnasium in Halle; um die Kosten aufzubringen, verdingte er sich bei dem Astronomen Bartholomäus Schimpfer als Schreiber. Schimpfer lebte von Horoskopen, gab Weigel Zugang zu seiner gut ausgestatteten Bibliothek und seinem Instrumentar und ergänzte die Mathematikkenntnisse des Jungen.

1645 gingen diesem die Mittel aus, und er verbrachte seine Ferien in Wunsiedel, wo der Archidiakon Jacob Ellrod, ein bekannter Mathematiker und Astronom, der ihn schon früher gefördert hatte und später im Kalenderstreit eine Rolle spielte, sich seiner annahm und ihn im Berechnen von Horoskopen unterrichtete.8 Weigel lernte bei Ellrod so viel, dass ihm sein Arbeitgeber Schimpfer nach der Rückkehr nach Halle »das ganze astrologische Geschäft mitsammt dem Kalendermachen übertrug«.9 Döring macht darauf aufmerksam, dass Weigel mit seinen Kritiken an ungebildeten Kalenderschreibern und ihren Vorhersagen über das Walten der Sterne nicht die fachgerechte Kunst der Astrologie, sondern ihren Missbrauch durch Beutelschneider bekämpfen wollte; er hatte auch später gegen die Berechnung fachgerechter Horoskope nichts einzuwenden. »Ich behielte diese Stern-Bestallung / als von Hauß auß / auch in Leipzig auff der Universitet / daselbst mir / als Juniori, die Astrologi bey den Penal-Putzern guten Wind; und die Astronomie / nechst der Geometrie / bey den frommen Studenten / auch in ersten Jahren private Auditores, mit Indulgentz der Obern / zuwege gebracht.« Er war der Meinung, dass »die Kunst an und vor sich richtig sey / nur die Künstler fehleten bißweilen.«10

Durch seine neuen Tätigkeiten bei Schimpfer wurde Weigel zu einer bekannten Person. Studenten aus Leipzig nahmen bei ihm Mathematikunterricht, und seine Mittel ermöglichten es ihm, sich in Leipzig als Student der Mathematik immatrikulieren zu lassen. Das Fach wurde in der Philosophischen Fakultät betrieben. In Leipziger Philosophievorlesungen lernte Weigel Autoren der damals führenden spanischen und portugiesischen Renaissance-Schulphilosophie wie Fonseca, Suárez und Hurtado de Mendoza kennen. Wichtig wurde für ihn die Freundschaft mit dem gelehrten Ingenieur Basilius Titel, der im Rang eines Obristen Kommandant der Festung Pleißenburg war; er gewährte Weigel Zutritt zu seiner reich ausgestatteten Bibliothek und zu seinen Instrumenten.11 Titel war ein angesehener Gelehrter; er korrespondierte mit der Royal Society in London und mit Hevelius in Danzig, war Mitarbeiter an Otto Menckes Acta eruditorum, der ersten wissenschaftlichen Zeitschrift in Deutschland, und verkehrte mit Ehrenfried Walther von Tschirnhaus. Weigel widmete ihm 1669 die Idea matheseos universae. Später übermittelte Christian Wolff, der in Jena Schüler von Weigels Freund und Schwiegerenkel Hamberger gewesen war, eine Anekdote über die Entstehung dieser Freundschaft. Weigel beobachtete mit Studenten im Freien den Nachthimmel, wurde aber von der Wache der Pleißenburg festgenommen, die annahm, dass es sich um Lattendiebe handelte. Der Kommandant erkannte beim Verhör am folgenden Morgen, dass dieser Verdacht nicht begründet war, unterhielt sich ausführlich mit Weigel, war von dessen Kenntnissen beeindruckt und empfahl ihn dem Gothaischen Hof für die Nachfolge des verstorbenen Jenaer Mathematikers Heinrich Hofmann (auch: Hoffmann); Ernst der Fromme von Sachsen-Gotha gab damals bei den drei Nutritoren (den Fürsten, die die Universität Jena finanzierten) den Ton an. Wegen Titels Empfehlung soll Weigel später gesagt haben, er verdanke seine Jenaer Professur den Leipziger Häschern.12

1650 promovierte Weigel in Leipzig zum Magister artium. Das teilte er dem Rat seiner Geburtsstadt Weiden mit, die ihm zur Gratulation einen Dukaten aus der Stadtkasse schickte.13 Er kündigte mit Erlaubnis der Fakultät Vorlesungen an, die gut besucht wurden, und habilitierte sich 1652 mit der Dissertatio metaphysica prior de existentia und der Dissertatio posterior de modo existentiae, qui dicitur duratio.14 Beide Themen spielen in Weigels späterer Philosophie eine wichtige Rolle. Ein Jahr später fand Weigels Heirat mit Elisabeth Bayer verwitweter Hartmann statt, die acht Kinder mit in die Ehe brachte und Weigel zwei Töchter gebar.

1653 wurde der Siebenundzwanzigjährige auf den verwaisten Lehrstuhl für Mathematik in Jena berufen, das in den Kriegsjahren verhältnismäßig glimpflich davongekommen war und bei Weigels Amtsantritt gegenüber dem Stand von 1618 nur etwas mehr als ein Viertel seiner Einwohner verloren hatte.15 Die Vorgänge, die zu Weigels Berufung führten, waren bis vor kurzem weitgehend ungeklärt. Man pflegte sich mit zwei Angaben zu begnügen, nämlich mit Wolffs Mitteilung, dass Titels Empfehlung für Weigels Berufung ausschlaggebend war, und mit einem Bericht von Georg Andreas Will im Nürnbergischen Gelehrtenlexikon von 1755, der auf einer Mitteilung des späteren Nürnberger Predigers Conrad Feuerlein beruhte. Feuerlein hatte drei Jahre lang in Leipzig studiert und erwarb danach den Magistertitel in Jena. Beim Examen machte er einen so guten Eindruck, dass ihn die Prüfer fragten, woher er denn »solche herrliche mathematische Wissenschafften« habe. Feuerlein nannte Weigel, der seitdem in Jena gut beleumdet war. Allerdings konnte die Fakultät gar nicht nach Belieben berufen, denn zunächst waren die Nutritoren im Spiel. Deren Rolle hat Stefan Kratochwil inzwischen geklärt; er setzte dabei Bemühungen des Astronomen und Kryptologen Walter Fricke fort, die in einem unveröffentlichten Manuskript im Jenaer Universitätsarchiv erhalten sind.16

Heinrich Hofmann, der verstorbene Inhaber des Jenaer Mathematiklehrstuhls, hatte nie den Magistergrad erworben, und deshalb konnte man bei ihm nicht promovieren; das wirkte sich negativ auf die Anziehungskraft des Faches aus, und es war klar, dass als Nachfolger nur ein Magister in Frage kam. Kratochwil fand einen Brief des Dekans der Philosophischen Fakultät an den Rektor der Universität Jena vom 17. November 1652, der eine Liste möglicher Nachfolgekandidaten enthält. Dort werden an erster und zweiter Stelle je ein Magister aus Gotha und Hamburg genannt; aus Altersgründen würden allerdings beide vermutlich einen Ruf nach Jena ablehnen. An dritter Stelle steht der Name Weigels, über dessen Bildungsgang, Begabung und didaktische Eignung der Dekan gut informiert ist.17 Drei Tage später wendet sich Weigel brieflich an die Nutritoren Herzog Ernst den Frommen in Gotha und Herzog Friedrich Wilhelm in Altenburg und bittet sie, sich für seine Berufung zu entscheiden. Dem entspräche es unter heutigen Umständen, dass ein Bewerber dem Hochschulministerium in aktenfähiger Form seine eigene Berufung nahelegt; doch haben sich inzwischen die Usancen verändert. Woher Weigel den Inhalt des Berichts der Universität an die Herzöge kannte, ist nicht bekannt; er beschreibt seine besondere Eignung jedenfalls mit ähnlichen Ausdrücken wie der Dekan in seinem Brief an den Rektor.18

Herzog Wilhelm IV. von Sachsen-Weimar diktierte am 8. Dezember an Herzog Ernst den Frommen in Gotha und Herzog Friedrich Wilhelm in Altenburg einen Brief, in dem er die Aufstellung einer neuen Liste empfahl, weil ihm keine der bisher vorgeschlagenen Personen bekannt sei. Bei dieser Lösung wäre Weigel wahrscheinlich nicht mehr im Rennen gewesen. In seiner Antwort an Wilhelm IV. umriss Herzog Friedrich Wilhelm zunächst die Kriterien für die Jenaer Nachfolge: Der Kandidat muss nicht nur theoretisch ausgewiesen, sondern auch in praktischer Mathematik erfahren sein, er muss zum Beispiel etwas von der Baukunst verstehen. Ferner muss er nicht nur in den theoretischen Disziplinen, sondern auch in Lehre und Disputation Gutes leisten. Diese Kriterien erfülle am ehesten Weigel, und das spreche dafür, ihn zu berufen.19 Friedrich Wilhelm gab keine Auskunft über die Herkunft seiner Informationen, überzeugte aber Wilhelm IV., denn dieser entschied sich nun für Weigels Berufung und ordnete noch am selben Tag in einem Schreiben an die Universität Jena dessen Installation an. Sechs Tage später bekräftigte das Herzog Friedrich Wilhelm von Sachsen-Altenburg in seinem eigenen Namen und im Namen des Herzogs Ernst von Sachsen-Gotha.20 Titel hatte sich seinerzeit an diesen gewandt, um Weigel als begabten Mathematiker zu empfehlen, an Weigels Berufung scheint er aber nicht intensiv beteiligt gewesen zu sein. Die Nutritoren betrachteten nun den Fall als abgeschlossen und ließen keine Diskussion mehr zu.21

Der Zustrom zu den Vorlesungen des neuen Mathematikprofessors war groß. Dorschner vermutet, dass sie inhaltlich nicht sehr anspruchsvoll waren, dass aber die Studenten sie gerade deshalb gut verstanden. Weigel ging pädagogisch geschickt vor und konnte seine Hörer fesseln. Sein Ruf, ein besonders begabter Mathematiker und Astronom zu sein, brachte viele Studenten nach Jena, dessen Immatrikulationszahlen sich binnen kurzer Zeit verdoppelten.22 Weigel beteiligte sich intensiv an dem, was man heute Selbstverwaltung nennt. Schon 1654 wurde er Stipendiatorum et Alumnorum Inspector; zu seinen Aufgaben gehörte die Aufsicht über das Collegium Jenense, ein Konvikt für unbemittelte Studenten. In dieser Funktion ergriff er harte Maßnahmen gegen studentische Unsitten wie Sauferei und nächtliches Randalieren. Auch wurde er Baubeauftragter der Universität, hatte sich also um die Universitätsbauten zu kümmern. Er leitete unter anderem den Umbau des Collegium Jenense und richtete auf der Plattform des aufgestockten Torgebäudes ein Observatorium ein. Mehrmals war er Dekan und wurde 1657 zum ersten Mal Rektor der Universität; später folgten noch zwei weitere Rektorate. Es kam auch zu Konflikten. 1658 veröffentlichte Weigel seine Programmschrift Analysis aristotelica ex Euclide restituta und löste dadurch Streitigkeiten mit der Fakultät aus, die sich über seine Versuche beklagte, »alle disciplinas philosophicas seinem Gefallen nach zu reformiren«; auch habe er »den Statuten zuwider auf ganz neue Art zu lehren angefangen«. Weigel versprach nach langen Verhandlungen Besserung. Die Tetractys-Schrift von 167323 verursachte einen Konflikt mit der theologischen Fakultät, »weil er das mysterium trinitatis aus den principiis geometricis zu demonstriren sich unterfangen«. Weigel erhielt deshalb von der Aufsichtskommission eine Rüge, wies sie aber sofort zurück: Nachdem mir von den fürstlichen Kommissären vorgehalten wurde, dass die Theologische Fakultät sich über mich beschwert, weil ich mir bei der Erklärung der Heiligen Schrift anmaße, heterodox aus arithmetischen Prinzipien das Geheimnis der Trinität zu demonstrieren, erkläre ich, dass ich diesem mit Nachdruck widerspreche.24

Er wurde auch im administrativen Dienst des Landes tätig. Wilhelm IV. bat ihn um Privatunterricht in Astronomie und ernannte ihn 1657 zum Hofmathematicus. 1661 bestellte ihn der neue Herzog Bernhard zum Artium Architectonicarum Director supremus (Oberbaudirektor); in diesem arbeitsaufwendigen Amt leitete Weigel von 1659–1661 den Neubau des Jenaer Schlosses. Dessen Dachaltan verzierte er mit einem drehbaren Himmelsglobus aus Eisenblech, dessen Durchmesser bei fünfeinhalb Metern lag; in seinem Inneren konnten mehrere Personen bei Tag einen ausgestanzten künstlichen Sternenhimmel betrachten. Dieses Planetarium musste allerdings nach 30 Jahren aus Stabilitätsgründen wieder entfernt werden.25 Im Zusammenhang mit seinen späteren Tätigkeiten knüpfte Weigel auch Verbindungen zum Reichstag und zum kaiserlichen Hof. 1681 ernannte ihn Kaiser Leopold I. zum kaiserlichen Rat,26 nachdem ihm schon vorher der Pfalzgraf von Pfalz-Sulzbach den Titel eines Pfalzgräflichen Rats verliehen hatte; Weigels Geburtsstadt Weiden gehörte damals zur Grafschaft Pfalz-Sulzbach. Die Kalenderverhandlungen mit dem Hof in Wien und den Evangelischen Ständen erforderten Reisen, doch reiste Weigel nicht selten auch in eigener Sache. 1691 plante er eine Reise nach London, um der Royal Society seine Erkenntnisse vorzutragen; er brach sie aber wegen stürmischen Wetters ab, hielt sich stattdessen eine Weile in den Niederlanden auf und besuchte unter anderem Christian Huyghens, der seinen Eindruck in einem Brief an Leibniz beschrieb.27 Seine Philosophia mathematica widmete Weigel 1693 der Royal Society.

Eine für das Reich wichtige Leistung waren Weigels Bemühungen um eine Kalenderreform. Der von Julius Caesar eingeführte Julianische Kalender war jährlich etwa 11 Minuten langsamer als die Sonne, und das führte nach jeweils 130 Jahren zu einer Differenz von etwa einem Tag. Die dadurch bedingte Verzögerung des kalendarischen Frühlingsanfangs hatte Folgen für den Ostertermin, den das Konzil von Nicäa auf den Sonntag nach dem ersten Frühlingsvollmond gelegt hatte. Dieser Termin hatte sich schon 1267 kalendarisch auf den 17. April verschoben, obwohl der erste Frühlingsvollmond auf den 9. April fiel. Die Differenz zwischen astronomischem und kalendarischem Datum hatte sich zu Weigels Zeit auf zehn Tage erhöht und führte zu Komplikationen im kirchlichen und bürgerlichen Alltag. Nach mehreren erfolglosen Ansätzen erarbeitete eine päpstliche Kommission unter Vorsitz des Mathematikers und Astronomen Christoph Clavius (Clau), der aus Bamberg oder der Umgebung von Bamberg stammte und dem Jesuitenorden angehörte, einen sachlich überzeugenden Vorschlag zur Kalenderverbesserung, den Papst Gregor XIII. 1582 durch Dekret seiner Kirche verordnete. Dass seitdem Katholiken nach dem Gregorianischen und Protestanten, die keinen päpstlich verordneten Kalender übernehmen wollten, nach dem Julianischen Kalender lebten, erschwerte den nationalen und internationalen Verkehr und den Alltag in konfessionell gemischten Gebieten. Deshalb pflegte man bald nach 1583 zur besseren Übersicht bei Datierungen sowohl das päpstliche als auch das protestantische Datum anzugeben.28 Gegen Versuche, den Datumswirrwarr durch die allgemeine Einführung des Gregorianischen Kalenders zu beenden, wehrten sich protestantische Geistliche und Laien mit polemischen Druckschriften, aber auch mit Handgreiflichkeiten. Die Evangelischen Stände beschlossen, den päpstlichen Kalender abzulehnen, und ließen durch universitäre Gutachten seine Korrekturbedürftigkeit nachweisen.29 Man erwog die Einführung eines verbesserten Einheitskalenders im ganzen Reich; der Archidiakon Jacob Ellrod, der vor Jahren den Knaben Weigel betreut hatte, entwarf einen »Mittel-Calender«.30 »Die zentrale Gestalt bei der letztlich erfolgten faktischen Übernahme des Gregorianischen Kalenders in allen deutschen Ländern« war Weigel.31

Er hatte sich schon früher für die »Zeit-Einigkeit« eingesetzt, aber seine Bemühungen traten 1681 in ein neues Stadium. Im November dieses Jahres hielt er sich in Dresden auf, um seinen neuen Kalender vorzustellen und um für Sachsens Beteiligung an einem Collegium von Kalenderspezialisten (Collegium Eruditorum) zu werben. Damit hatte er Erfolg, denn der sächsische Landtag beschloss, die Kalenderreform vor den Regensburger Reichstag zu bringen. Weigel ging davon aus, dass der päpstliche Kalender für Protestanten auch weiterhin unannehmbar blieb, und arbeitete an einer Alternative, deren Datierungen mit denen des päpstlichen Systems übereinstimmten. 1687 legte er dem kaiserlichen Hof eine Denkschrift vor und verband darin die Kalenderreform mit seinem Projekt des Collegium artis consultorum, das sozusagen als Deutsche Akademie gedacht war. Es sollte für alle Kalenderfragen zuständig sein und zugleich als Patentamt dienen; mit den Einnahmen aus beiden Aufgaben konnte die Akademie sich selbst finanzieren. Zu beiden Vorschlägen äußerte sich ein kaiserliches Dekret zustimmend. 1696 reiste Weigel nach Dänemark und Schweden, um auch diese protestantischen Länder für seine Reform zu gewinnen. In Schweden erreichte er wenig, aber in einem Königlich-Dänischen Reskript wurde dieser »bequeme Vorschlag zur Kalenderreform« approbiert.32 Daraufhin diskutierte Weigel sein Projekt mit den Evangelischen Reichsständen; zur Vorbereitung der Gespräche diente seine Schrift »Unmaßgebliche Vorschläge Herrn Raths Erhard Weigels« von 1697. Da ohnehin im Jahr 1700 wichtige Ephemeridentafeln ausliefen, empfahl er, in Zukunft alle Kalenderdaten auf der Grundlage der von Kepler vollendeten Rudolphinischen Tafeln zu berechnen, denn wenn beide konkurrierenden Systeme eine gemeinsame astronomische Grundlage hatten, war die Übereinstimmung ihrer Ergebnisse gesichert. Für die Ansetzung von Schaltjahren sah Weigel eine andere Regelung vor als Clavius, der in jedem vollen Jahrhundert, dessen Zahl nicht ohne Rest durch 400 teilbar war, einen Schalttag ausfallen ließ. Weigel sah vor, stattdessen alle 130 Jahre einen Schalttag zu streichen. Obwohl sein Vorschlag bis auf wenige unbedeutende Veränderungen mit dem Gregorianischen Kalender übereinstimmte, nahmen die Reformgespräche einen guten Verlauf; das Collegium wurde praktisch als gegründet und Weigel als dessen Direktor angesehen. Am 4./14. Oktober 1698 formulierte er noch einmal seine wichtigsten Vorschläge für die evangelischen Gesandten beim Reichstag und fügte hinzu: »[…] das übrige gibt sich nach Anleytung des corrigirten Julianischen Cycli selbst«. Es ging nicht um die Einführung des Gregorianischen Kalenders im ganzen Reich, sondern um die des »Verbesserten Julianischen« Kalenders bei den Protestanten, und dieses Detail war entscheidend. In seinem »Abermahligen Schreiben an das Evangelische Corpus zu Regenspurg« setzte sich Weigel für den baldigen Abschluss der Verhandlungen ein, damit der neue Kalender schon 1700 in Kraft treten konnte; er befürchtete für den Fall, dass zwischen der Verabschiedung und der Einführung viel Zeit lag, den Eingang zu vieler Änderungsvorschläge, die die Verabschiedung noch mehr verzögern würden; sein Vorschlag sei ja so beschaffen, »daß er den Haupt-Mangel des Julianischen Calenders auff einmahl hebt«.33 Dieses Dokument vom Januar 1699 ist Weigels letzte bekannte schriftliche Äußerung zur Kalenderreform. Er starb am 21. März in Jena.

Um die Vollendung des Unternehmens zu sichern, überzeugten Weigels Schüler Albrecht Georg Hamberger und Johann Christoph Sturm sowie der Experte Johann Meyer aus Regensburg das Gremium davon, dass sie selbst und weitere Gelehrte in der Lage waren, Weigels Arbeit fortzuführen. Die Stände beschlossen die Reform in der Sitzungsperiode vom 18. Februar bis 1. März 1700. Weil man annahm, dass bei der Einführung einer Regelung für das ganze Reich mit Widerstand von katholischer Seite zu rechnen war, denn der Gregorianische Kalender bedurfte nach katholischer Meinung keiner Reform, begnügte man sich mit einem Beschluss der evangelischen Reichsstände, der nur die nichtkatholischen Länder betraf; damit war die von Weigel gewünschte »Zeit-Einigkeit« im ganzen Reich verwirklicht.34

2. Weigels Pädagogik

Wiedereinführung der Mathematik und der Realienfächer an den Schulen

Weigel war vermutlich kein mathematisches Genie. Er beherrschte anscheinend die Grundrechenarten, euklidische Geometrie, Potenz- und Proportionalrechnung, Trigonometrie, analytische Geometrie, Logarithmenrechnung und die mathematischen Verfahren der damaligen Astronomen. Dass Weigel von den mathematischen Umwälzungen, die sich zu seiner Zeit in Italien, den Niederlanden, Frankreich und England anbahnten, kaum etwas wusste, bemerkte Christian Huyghens wohl schon bei der einzigen Begegnung der beiden.1 Auf der anderen Seite darf man annehmen, dass Weigel ein begnadeter Mathematiklehrer war.2 Dafür spricht unter anderem die Entwicklung der Immatrikulationszahlen an der Universität Jena, die allerdings mehr als einen Grund hatte, zum Beispiel Jenas zentrale Lage, die niedrigen Lebenshaltungskosten und die modernen Trends der dortigen Theologie. Die Fachleute sind sich aber einig, dass einer der wichtigsten Anlässe für Jenas Aufstieg das von Weigel vertretene naturwissenschaftliche Denken war. Die Neuberufung erwies sich als Publikumsmagnet. Das Observatorium auf dem Dach des Kollegiengebäudes zog viele Studenten an. Weigels astronomische und physikalische Experimentalkurse, die später Sturm in Altdorf weiterführte, waren etwas Neues, Weigels Vortrag war lebhaft, fesselnd, verständlich und praxisnah und zog Kenner und Wissbegierige an. Es heißt in einem Zeugnis, das die Universitätsbibliothek Jena aufbewahrt: Kaum war von uns »das astrognostisch-heraldische Colleg angekündigt worden, als auch schon über 400 Studenten sofort zu unserem Hause strömten«,3 alle von einer ungewöhnlichen Wissbegierde erfüllt. Da für eine so große Anzahl nicht genug Platz »vorhanden war, musste man umgehend vor den Stadttoren im Freien eine Art von Hörsaal improvisieren«.4

Weigels Bauten und Erfindungen beeindruckten weit über Jena hinaus. Sein technisch hervorragend ausgestattetes Wohnhaus galt als mathematisch gestalteter Mikrokosmos; man bewunderte den Personenaufzug, den Ausschankautomaten und das aus verschließbaren Hähnen fließende Wasser. Vor allem aber beschäftigte sich Weigel mit Möglichkeiten der Einführung oder Verbesserung des mathematischen und naturwissenschaftlichen Unterrichts an Elementarschulen, Gymnasien und Hochschulen und setzte sich, um einen heutigen Ausdruck zu verwenden, bei Politikern als Lobbyist für Reformen des Erziehungswesens ein. Er steht in der Tradition einer zu Beginn des 17. Jahrhunderts einsetzenden Reformbewegung in der Pädagogik, die den Unterricht in Inhalt und Form verändern wollte: Aufwertung des Sachwissens gegenüber dem Wortwissen, Insistieren auf einer engen Verbindung von Theorie und Praxis in allen Lehrbereichen, Berücksichtigung der Muttersprache auch an sekundären und tertiären Anstalten, Ablehnung der exzessiven Schätzung des Lateinischen und lebendige Unterrichtsgestaltung an Stelle des Paukbetriebs.5

In den letzten 18 Jahren seines Lebens entfernte sich Weigel wegen anhaltender Zwistigkeiten immer mehr vom Universitätsbetrieb und konzentrierte sich auf pädagogische Tätigkeiten. Von 42 bekannten Schriften aus dieser Zeit beschäftigen sich 30 mit der Reform von Schulen und Kalenderwesen; 23 davon sind Eingaben an den Landtag, den Reichstag und den Kaiser oder Anleitungen für Eltern und Lehrer seiner Versuchsschule.6 Er klagt in der Analysis aristotelica über »das elende Los unserer Jugend« und moniert, dass man in Deutschland Kinder unter zwanzig Jahren mit Grammatikübungen belastet, die sie mehr verwirren als fördern. Weil seine Eltern arm waren, musste er schon mit elf Jahren Nachhilfeunterricht erteilen, er kam also nicht nur durch Berichte anderer, sondern auch durch eigene Erfahrung zu der Überzeugung, dass hierzulande beim Unterricht von Knaben manches ganz verkehrt läuft.7 Daran gibt er aber weder den Lehrern noch den Obrigkeiten die Schuld, denn diese tun nur, was ihnen der Lehrplan (»das Schulregister«) vorschreibt. Weigel erklärt, dieses Register sei »nach altem Schrot und Korn gemünzt« und nur deshalb noch in Geltung, weil es schon so lange gilt. Die Gelehrten hätten es besser wissen können, denn sie wurden bestellt, um zu empfehlen, was dem Gemeinwesen Nutzen bringt, und um auf Fehlentwicklungen hinzuweisen; dabei seien sie auch keineswegs chancenlos. Er selber habe schon vor mehr als zwanzig Jahren die Mathematikprofessoren von Wittenberg und Leipzig um ein Treffen gebeten, um mit ihnen über die Verbesserung des Kalenders zu beraten. Auf eine Eingabe dieser Gruppe hin wurde für den Reichstag die Diskussion über die Kalenderreform auf die Tagesordnung gesetzt. Ferner habe Weigel beim Landtag in Dresden Vorschläge zur Wiedereinführung von Arithmetik, Geometrie, Astronomie und Musik an den Schulen eingereicht; auch daraufhin sei einiges unternommen worden.8

Die Überzeugung, dass man an deutschen Schulen den Unterricht in Mathematik und in den Realienfächern wieder einführen muss, gehört zu den Impulsen für Weigels pädagogische Bemühungen. Von den Werken Gottes in der Schöpfung und von den körperlichen und geistigen Werken kluger Menschen, berichtet er, kommt in deutschen Schulen seit Jahrhunderten wenig oder gar nichts mehr vor, obwohl die klassischen Autoren in vielen erhaltenen Texten ausführlich darüber berichten. Diese hat man bei uns zwar gelesen, aber nicht im Blick auf ihren Inhalt;9 die Gelehrten beschäftigten sich lieber mit Streitigkeiten über die Bedeutung von Vokabeln als mit der Kunst von Handwerkern und Mechanikern oder mit der Natur. Wenn man sich hier vernünftiger verhalten hätte, herrschte heute in der Welt Friede und Eintracht, und die Gelehrten interessierten sich nicht für die Verehrung sterblicher Autoritäten, sondern für das Lob und die Erkenntnis Gottes;10 das Gemeinwesen aber wäre um Tausende von nützlichen Produkten reicher.11 Weigel nimmt an, dass die wachsende Macht Europas in anderen Erdteilen unmittelbar mit seiner Überlegenheit in mathematiknahen Künsten wie Mechanik, Technik und Militärwesen zusammenhängt. Das sei aber nicht für alle Zeit genug. In einem Land, auf dessen Boden die Nationen Europas noch vor wenigen Jahrzehnten ihre Auseinandersetzungen austrugen und das noch immer unter den Folgen leidet, ließe sich durch mechanische Erleichterungen der Arbeit und durch Verbesserungen in der Produktion eine Menge erreichen. Schon jetzt aber lebten in Europa die Menschen wie das Vieh, wenn die Wissenschaft nicht die sogenannten bürgerlichen Künste erfunden hätte, die letztlich alle auf Mathematik beruhen. Erst sie haben es möglich gemacht, Arbeit und Mühe mit mechanischen Mitteln zu erleichtern, geschützt zu wohnen und Feinde dauerhaft abzuwehren.12

Trotzdem dreht man in deutschen Schulen weiter die Wirklichkeit um und möchte möglichst allen Kindern Latein in die Köpfe hämmern; dabei vernachlässigt man die Natur, die Gott geschaffen hat, mit ihren Pflanzen, Tieren und Mineralien und sogar die Formung des Charakters der Schüler.13 Wer nicht Latein gelernt hat, ist ein Tropf, und wer nicht deklinieren kann, ein Idiot oder (noch schlimmer) ein Laie. Solche Qualifikationen durch Lehrer sind schon deshalb unangebracht, weil sie maßlosen Hochmut stiften.14 Auf diesen Missstand geht Weigel häufig ein, denn nicht nur als Erfinder, sondern auch als Architekt, als Verantwortlicher für große öffentliche Bauten und als Bauherr eines technisch anspruchsvollen Privathauses war er auf leistungsfähige Handwerker angewiesen. Er schätzte ihr Können15 und wusste, dass wir in vieler Hinsicht auf sie angewiesen sind. Zwar hielt er es wegen der Verständigung zwischen Menschen verschiedener Völker für gut, dass man überall in Europa Latein versteht, erklärte es aber für falsch, dass man es den Schülern mit Hilfe von Grammatiken einbläut, die eigentlich für Erwachsene geschriebenen wurden; das sei genau so klug, wie wenn man unmündige Kinder beim Lesenlernen nicht die Buchstaben, sondern die Regeln für ihre Artikulation (Zunge an Gaumen, Mund weit öffnen) nachsprechen ließe.16 Deswegen lerne man bei uns Latein, bis man am Ende zwanzig Jahre alt ist, obwohl man alle anderen Sprachen, falls man es richtig macht, schon nach zwei Jahren passabel sprechen könne.17

Nach dem langen Krieg mit Mühsal und Armut müsste man endlich wieder Mathematik und Realienfächer in die Schulen bringen. Die richtigen Mittel, um sie leicht und mit Lust zu lernen, haben schon die weisen Griechen und Römer, unsere Lehrer in den freien Künsten Arithmetik, Geometrie, Astronomie und Harmonielehre, gesucht und gefunden.18 Weigel bezieht sich auf die sieben Künste (Artes), also auf Grammatik, Rhetorik, Dialektik, Arithmetik, Geometrie, Musik und Astronomie, die im Mittelalter als propädeutische Fächer an den Artes-Fakultäten gelehrt wurden, den Vorläufern der heutigen philosophischen Fakultäten. Diese Künste üben nach seiner Meinung den Verstand darin, gern nachzudenken, und wenn er das gelernt hat, kann er die anderen Unterrichtsstoffe leichter begreifen. Für Kinder, die nicht weiterstudieren, sondern nach der Schulzeit eine mechanische Kunst, ein Handwerk oder ein Gewerbe lernen wollen, wäre die Wiedereinführung dieser Fächer von besonderem Nutzen.19

Weigel führte in den siebziger Jahren literarisch nicht überlieferte Untersuchungen über die Vorteile und Lernchancen durch, die mathematische und naturwissenschaftliche Fächer bieten. Bei seiner Beschäftigung mit dem Pythagoreismus war er zu der Überzeugung gelangt, dass Zahlen und mathematische Strukturen sozusagen der Seinsgrund der Welt sind. Das fand er durch ein Bibelzeugnis bestätigt, nach dem Gott alles nach Maß, Zahl und Gewicht geordnet hat.20 Die Mathematik ist ein sicheres Mittel zur Erkenntnis dessen, was Gott getan hat. Weigel wies ferner darauf hin, dass sich Kinder durch Mathematikunterricht an bestimmte Tugenden gewöhnen und dass deswegen dieses Fach, wie man heute sagen würde, bei der Charakterbildung hilfreich ist. Auch deshalb und nicht nur im Blick auf Mathematik, Ökonomie und Politik ist es nach Weigel wichtig, die Artes oder Künste bei der Bildung von Kindern wieder einzusetzen.21 Das wäre außerdem ein großer Schritt zur Verbesserung der beruflichen Bildung. Solche Ansätze Weigels wurden von Schülern fortgeführt. Paulus Pater gründete in Danzig erfolgreich eine technische Lehranstalt, und Christoph Semler, Professor für Mathematik, Philosophie und Theologie und städtischer Schulinspektor in Halle, setzte sich für die Verbesserung des Realwissens der Jugend ein und warb für die Einrichtung von Handwerks- und Realschulen. 1705 gründete auch er mit gutachtlicher Unterstützung durch Leibniz eine Realschule mit den Schwerpunkten Mathematik und Mechanik. In der Umgebung von August Hermann Francke, dem Gründer der Franckeschen Stiftungen in Halle, erweiterte Julius Hecker das Weigelsche Schulkonzept und gründete 1747 in Berlin eine ökonomisch-mathematische Realschule. Auch bildete sich eine Kette von Multiplikatoren, die Weigels Anregungen weiterentwickelten; die Darstellung von Hildegart Schlee enthält außer den genannten Hinweisen eine Graphik zur Ausstrahlung Weigelscher Reformideen bis nach Amsterdam, Riga, Pressburg und London.22 Die Bemühungen Weigels und seiner Schüler für die Ziele der damals blühenden »Realismus«-Bewegung, die verlangte, in Elementarschulen und Gymnasien auch mathematische, naturwissenschaftliche, ökonomische, historische und musische Kenntnisse zu vermitteln, waren ein Versuch, manuelle und geistige Tätigkeit miteinander zu verbinden, und nahmen spätere berufspädagogische Bestrebungen vorweg.23

Lernen ist Spielen mit der göttlichen Weisheit

Zu Weigels pädagogischen Impulsen gehörte die Überzeugung, dass beim Erkenntnisvorgang die göttliche Weisheit und der menschliche Geist miteinander spielen. Weil sein Land konfessionell gespalten war, war es nicht angebracht, in Schriften, die sich an die gesamte deutsche Öffentlichkeit richteten, konfessionell zu argumentieren. Er konnte sich aber erstens auf Bibelstellen berufen, denn die Bibel gehörte allen Konfessionen, und er konnte zweitens vernunfttheologische Begründungen verwenden. Die Vernunfttheologie, nach der sich die Existenz eines höchsten Wesens mit Vernunftargumenten beweisen lässt, gilt seit Kant und seit den heute schon wieder fast vergessenen Auseinandersetzungen über das Erste Vatikanische Konzil in Deutschland24 als obsolet. In Weigels Nachkriegsgesellschaft erleichterte sie das Zusammenleben und die Zusammenarbeit von Menschen verschiedener Konfessionen. Auf heutige Leser, die unter anderen Bedingungen leben, wirken Weigels vernunftfromme Äußerungen manchmal abgestanden, aber damalige Gelehrte, die auf Kontakte mit Kollegen aus ideologisch verfeindeten Nationen und Glaubensrichtungen angewiesen waren, fanden in der Vernunfttheologie eine Verständigungsbasis, die sich sogar mit Bibelzitaten bereichern ließ. Sie erörtert, was unsere Vernunft nach damaliger Überzeugung auch ohne Hilfe göttlicher Offenbarung und kirchlicher Beschlüsse von Gott und seinem Willen erkennen kann. Damals beugte sie Kollisionen zwischen Gläubigen verschiedener Richtungen vor, überbrückte konfessionelle Feindschaften und konnte sogar zur Grundlage einer konfessionsunabhängigen Frömmigkeit werden, wie sich heutige Leser noch an Samuel Reimarus’ zwei Generationen jüngerer Schrift Von den vornehmsten Wahrheiten der natürlichen Religion klarmachen können.25 Die Vernunftreligion hatte darüber hinaus den Vorzug, überkonfessionelle Argumente gegen den Atheismus bereitzuhalten, dessen Ausbreitung damals vielen Gebildeten Furcht einflößte. Er wurde trotz der Bemühungen von Gelehrten wie Baruch Spinoza, Christian Thomasius, Christian Wolff und David Hume als Gefährdung von Moral und Gesetzestreue wahrgenommen, denn Atheisten können ohne Furcht vor jenseitiger Vergeltung Böses tun und keine Eide im Namen Gottes leisten.

Weigels Äußerungen über die göttliche Weisheit stützen sich auf den Text 8, 22–31 aus den Sprüchen Salomonis:

Der Herr hat mich gehabt im Anfang seiner Wege; ehe er etwas schuf, war ich da. Ich bin eingesetzt von Ewigkeit, von Anfang, vor der Erde. Da die Tiefen noch nicht waren, da war ich schon geboren; da die Brunnen noch nicht mit Wasser quollen. Ehe denn die Berge eingesenkt waren, vor den Hügeln war ich geboren. Da er die Erde noch nicht gemacht hatte und was darauf ist, noch die Berge des Erdbodens, da er die Himmel bereitete, war ich daselbst. Da er die Tiefe mit seinem Ziel fasste, da er die Wolken droben festete, da er festigte die Brunnen der Tiefe, da er dem Meer das Ziel setzte und den Wassern, dass sie nicht überschreiten seinen Befehl, da er den Grund der Erde legte, da war ich der Werkmeister bei ihm und hatte meine Lust täglich und spielte vor ihm allezeit. Und spielte auf seinem Erdboden, und meine Lust ist bei den Menschenkindern.

Jüdische und christliche Theologen haben über das Verhältnis dieser spielenden Weisheit zu Gott nachgedacht. Weigel identifizierte sie mit dem Gott der Schöpfungsgeschichte und ging davon aus, dass das Spielen nicht nur ihr, sondern auch uns unerschöpfliche Freude bringt. »Wer nur dieselbe recht bedenckt / und dieses / was bishero gemeldet / offtmals überlegt / bis er die That (die Freud im Werck und in der That / die nicht eher kommt / es habe dann der Mensch die Liebe dazu / durch offters daran dencken / und sich darnach sehnen / durch offtmaliges Verlangen / als zum Voraus / ernstlich bezeiget) bis er / sage ich / diese Freud / durch Angewehnung steter Denckung an die Güte GOttes / selbst empfindet / welche denn nicht / wie Lust des Fleisches / flüchtig / sondern immerwährend und beständig ist / davon der Mensch / ders recht versteht / nicht lassen kan / und GOtt lässt nicht <B5.1: von>ihm / dieweil Er / der Mit-Freude wegen / die Er von den Menschen-Kindern haben will / das Spiel geordnet / und so lang bisher getrieben hat.«26

Diese Überzeugung prägt Weigels Wissenschaftsverständnis, aber auch seine Pädagogik und die Organisation seiner Versuchsschule, bei der er wie Comenius27 davon ausgeht, dass Lernen, wenn man es richtig beginnt, zum Spiel wird. Erkenntnisgewinn ist ein Spiel, Spielen macht Freude, und diese Freude darf man Kindern nicht verderben. Sie lernen am besten, wenn man sie mit Vergnügen der Weisheit zuhören lässt. Weigel entwickelt geradezu eine Mystik der göttlichen Weisheit. Lernen ist ein Spiel mit ihr und muss ein Spiel bleiben. Wenn man den Unterricht wie ein Spiel gestaltet, lernen schon kleine Kinder alles, was sie im Gedächtnis behalten sollen, in Gesellschaft von ihresgleichen und mit guter Körperhaltung, die sie ebenfalls durch Bewegungsspiele lustvoll erwerben. Solange sie Lust behalten, erfassen sie den Lehrstoff leicht und schnell und bewahren ihn dauerhaft im Gedächtnis; auch bei hoher Klassenstärke lernen sie gern Latein, das man in den üblichen Schulen selbst älteren Kindern kaum einprügeln kann, schon in der dritten Klasse, außerdem aber auch elementare Mathematik, und zwar ohne Prügel und doppelt so schnell wie andere Kinder.28 Dabei gewöhnen sie sich unvermerkt an den Gedanken, dass Freude an und mit Gott unser höchstes Gut ist. Wenn man versteht, dass Gott sehr gnädig mit uns ist (denn er will immer durch seine Weisheit mit uns spielen), nimmt man am Ende auch seine Schickungen als Spiel. Das ist dann allerdings kein Kinderspiel mehr, sondern ein Ernstspiel. Ein Weiser spielt auch dieses mit Verstand und in Verantwortung vor Gott.29

Hier öffnet sich ein Ausblick auf Weigels Spiritualität: Das Ergebnis der Betrachtung Gottes ist Freude, die beim Weisen so stark ist, dass sie auch Schicksalsschläge übersteht und erträglich macht. Weigel spielt nicht selten auf sie an, erörtert sie aber nicht ausführlich. Stattdessen verweist er auf die zu seiner Zeit bei Katholiken und Protestanten gleich geschätzte und auch für Leibniz und Wolff belangreiche Schrift Ars semper gaudendi eines belgischen Mathematikers spanischer Herkunft, des Jesuiten Alfonso Antonio de Sarasa.30 Aus ihr zitiert er im Wienerischen Tugendspiegel und in der Philosophia mathematica ausführlich.31

Ob Kinder merken, dass Lernen Spielen mit der göttlichen Weisheit ist und Freude bringt, hängt weitgehend von der Gestaltung des Unterrichts ab. Wenn sie diesen zunächst als mühsam empfinden, muss sie der Lehrer durch Freude motivieren. Spielen hängt meist mit Bewegung zusammen, und deshalb tut der Lehrer gut daran, Lernen mit Bewegung und überhaupt mit Tätigkeit zu verbinden. Wenn er die Schüler nie etwas selbständig tun lässt, sie immer passiv hält und sie lediglich Vorgesprochenes auswendig lernen lässt, werden sie faul und träge, verdrossen und mutwillig. Weil man ihren natürlichen Tatendrang durch Stillsitzen unterdrückt, geben sie beim Heimweg auf der Straße sofort ihrem Mutwillen freie Bahn – je seltener man Kälber ins Feld treibt, desto frecher werden sie.32 Wer in seinen Unterricht Spiel und Bewegung einbringen will, muss allerdings bei Schülern verschiedener Altersstufen ganz verschieden vorgehen. Ehe sich bei etwa Fünfjährigen der Verstand ereignet, wünschen sich Kinder außer Essen und Trinken vor allem Gesellschaft und gemeinsame Bewegung. Sie sitzen erst still, wenn man ihnen etwas zum Spielen in die Hand gibt oder ihnen Geschichten erzählt. Wer sich das zunutze macht, kann erreichen, dass sie Dinge, die sonst für sie und ihre Erzieher verdrießlich wären, unversehens mit Lust tun.33 Demgegenüber sind Kinder von fünf bis sechs Jahren zwar noch etwas kindlich, aber schon verständig. Sie interessieren sich für Werke der Natur und für Werke von Menschenhand, weil es ihren Sinnen Freude macht, sie anzuschauen, anzuhören, zu betasten, zu schmecken und zu riechen. Auch setzen sie gern ihren Geist ein, denn sie wollen Dinge zählen, messen und nach Gruppen ordnen. Ihr Tatendrang treibt sie dazu, manches umzubauen oder durch Schnitzen und Kneten zu verändern. Eltern und Lehrer sind bald damit ausgelastet, ihren Tatendrang im Zaum zu halten. Im Grunde zeigt sich aber so, dass ihr Verstand und ihre Urteilskraft heranwachsen, denn Tiere tun so etwas in der Regel nicht. Wenn man ihren Verstand unterstützen und ihre Geschicklichkeit und Tugend fördern will, kann man für Kinder in diesem Alter nichts Nützlicheres und Angenehmeres tun, als sie mit dem Aussehen und der Wirkung von Dingen, besonders von ungewöhnlichen, vertraut zu machen. Man kann zum Beispiel mit ihnen durch Feld, Wald, Garten oder Wiesen streifen und sie Naturdinge oder liegengebliebene Werkstücke von Menschen sammeln und ordnen lassen, oder man kann ihnen bei Dunkelheit die Sterne zeigen. Man kann ihnen ferner beibringen, mit Sachen richtig umzugehen, nur muss man ihnen dabei die Gründe nennen. Daran haben sie nicht weniger Freude als an den Sachen selbst.34 Ihre Freude am Lernen wächst, wenn sie gelegentlich auch von Jugendlichen unterrichtet werden. Viele von diesen unterrichten gern. Wenn man in einer Stadt zwei oder drei Stipendiaten oder in einem Dorf zwei oder drei arme Schüler zu Schulhelfern macht, erfährt man, dass ihnen das Unterrichten sogar an den heißesten Tagen und selbst bei kleinen Kindern Freude macht. Wenn Sechsjährige, die auf die beschriebene Weise unterrichtet wurden, danach in eine normale Schule kommen, sind sie in Sprache, Wissen und Verhalten schon deutlich weiter als die dortigen Unterklassenschüler.35 Sie haben bereits als kleine Kinder, bevor ihnen der Verstand kam, im Spiel nicht nur den Grund der Gottesfurcht und aller Tugenden, sondern auch Dinge gelernt, die man ihrem Gedächtnis sonst kaum einprägen könnte, und wünschen sich außer ihren Schulspielen weder mutwillige Gassenspiele noch andere unvernünftige Beschäftigungen. Wenn sich danach der Verstand bei etwa Zehnjährigen weiter entfaltet, muss man sie wiederum anders unterrichten.

Bei jeder Altersstufe und in jedem Unterrichtsfach muss sich der Lehrer neue Motivationen ausdenken. Zum Beispiel ist Auswendiglernen für Kinder eine unangenehme Erfahrung, es kommt also darauf an, dass man es in ein Spiel verwandelt. Dazu muss man es mit einer Nebenlust verbinden und mit angenehmer Tätigkeit versüßen, denn sonst schleppt man wie im Sprichwort den Hund zum Jagen.36 Vielen Kindern macht der Mathematikunterricht keine Freude, weil sie dabei in der Regel sitzen oder stehen müssen. Der Lehrer kann aber hin und wieder praktische Übungen einlegen, die letztlich auf Arithmetik und Geometrie hinauslaufen, er kann sie zum Beispiel Bälle in eine bestimmte Richtung schlagen oder Billardkugeln mit dem Spielstock lenken lassen. Solche Unterbrechungen sind, wenn man sie gut erklärt, nur Fortsetzungen des Lernens und bringen mehr Nutzen als bloßes Weiterunterrichten.37 Religiöse Erziehung ist wichtig, man muss aber bedenken, dass sich Kinder durch Gottesdienstbesuche nicht leicht motivieren lassen. Die Erfahrung zeigt, dass bei der Predigt nur Erwachsene zuhören. Die Kinder singen allenfalls im Chor oder müssen so lange in der Kirche warten, bis ihr Lehrer den Gottesdienst zu Ende gehört hat und wieder in die Schule kommt. Während der Wartezeit haben sie weder einen eigenen Platz noch genug Geduld, um eine Predigt anzuhören, die sie nicht verstehen.38 Solche Erfahrungen sind für sie keine Freude.

Man muss einem Schüler nicht wie einem Klotz alles einbläuen, was er tun soll, sondern ihm vormachen, wie man sich richtig verhält, und ihn in Güte dazu bringen, es so zu machen. Das gelingt vielleicht nicht gleich auf einmal, aber wenigstens Stück für Stück. Richtige Bewegungen trainiert man nicht anders. Wenn die Füße tanzen, die Finger schreiben oder Laute spielen, die Arme fechten oder die Hände handwerkliche Tätigkeiten einüben sollen, gibt man am Anfang oft Ermahnungen, aber wenn man es dabei belässt, bleiben die Füße lahm, die Beine tölpelhaft und Finger, Hände und Arme auf ewig ungeschickt.39

Manche Kinder gewöhnen sich an die Schule nur schwer. Man könnte ihren Willen auf vielerlei Weise beugen und brechen, aber man versucht am besten nie, sie mit den üblichen Überredungskünsten, mit Gewalt oder Strafandrohung, mit falschen Vorspiegelungen oder durch Missbrauch vorübergehender Situationen gefügig zu machen, denn die Gewohnheit, tugendhaft zu handeln, erwirbt man nur durch tugendhaftes Handeln. Hilfreich sind angenehme Tätigkeiten. Man kann in Kindern durch positive Einwirkungen, zum Beispiel durch lebhafte Unterhaltung, Tugenden wecken.40 Mit Ermahnungen und Befehlen erreicht man höchstens ihren Verstand. Sie merken dann, dass sie das, was man ihnen befiehlt, am besten jetzt tun, aber dadurch wissen sie noch nicht, wie man es richtig tut.41 Bei der Gewöhnung des Willens von Kindern geht es nicht darum, ein wildes Füllen ans Bereiten oder einen Bären ans Tanzen zu gewöhnen, man muss vielmehr die Freiheit ihres Willens achten und sie von innen her lenken. Dann tun sie das, was vernünftig ist, nicht deshalb, weil es ihnen befohlen wird, weil es im Gesetz steht oder weil ihnen sonst eine Strafe droht. Sie müssen es aus innerem Antrieb und letzten Endes aus Liebe zu Gott tun.42 Beim Einlernen und Angewöhnen gibt es keine schlechteren Mittel als Belohnungen und Drohungen. Beides lenkt den Geist vom Zweck des Unterrichts ab und bewirkt, dass Kinder nicht aus Lust und Liebe zur göttlichen Weisheit lernen, sondern im Fall von Belohnungen aus Gewinnsucht und im Fall von Drohungen aus Furcht. Greift man am Ende zu Bestrafungen, macht man sie widerspenstig und halsstarrig und hat nicht den geringsten Nutzen davon, denn Wissen lässt sich nicht erzwingen.43

Manche Eltern unterstützen den Lehrer, aber manche auch nicht. Einige schicken ihre Kinder schon zur Schule, wenn sie noch sehr klein sind, aber nur, damit sie lernen, stillzusitzen, denn sonst sind sie zu Hause hinderlich oder treiben auf der Straße Unfug. Die Schule dauert kaum sechs Stunden am Vor- und Nachmittag, und der Unsinn, den Kinder danach zu Hause treiben, wiegt das, was sie in der Schule lernen, bei weitem auf. Die Lehrer halten sie mit Stöcken auf der Sitzbank, und diesen Verdruss vergelten sie nach der Schule mit doppeltem Unfug.44 Bei wenig gebildeten Leuten ist es ohnehin die geringste Sorge, ob ihre Kinder geistig gefördert werden oder nicht. Sie haben genug damit zu tun, ihnen den Bauch vollzustopfen, damit sie stark werden, und ihnen die Haut zu putzen, damit sie schön werden. Man schickt sie in die Schule, damit jemand auf sie aufpasst, denn Schulen sind fast überall kostenlos oder kosten im Vergleich zu dem, was für den Körper der Kinder aufgewendet wird, nur wenig. Andererseits haben manche Eltern Bedenken, ihr Kind überhaupt in die Schule zu schicken, und wenn sie das endlich tun, ist es bereits verwöhnt und halsstarrig.45 In den meisten Fällen sind nicht die Lehrer, sondern die Eltern schuld, wenn Schulkinder sich ungebührlich benehmen. Wenn Eltern nicht zu Hause für Ordnung sorgen, ist die Ordnung, die ihre Kinder in der Schule lernen, ganz umsonst. Wenn die Eltern sie nicht wie Äffchen lieben, sondern um ihrer vernünftigen Seele willen, behandeln sie sie wie vernünftige Wesen und verwöhnen sie nicht.46

Hier zeigt sich eine Seite Weigels, die viele heutige Eltern für verfehlt halten dürften, während man sie noch vor wenigen Generationen für normal hielt. Weigel teilt nicht die Meinung, dass sich Jugendliche erst einmal austoben müssen und dass später ihr Mutwille irgendwie von selber aufhört. Solche Ansichten beruhen nach Weigel auf Gleichgültigkeit. Nachlässigkeit bei der Erziehung von Kleinkindern kann schlimme Folgen haben, denn wenn man ihrem Willen freie Bahn gibt, kommen sie schon verdorben in die Schule. In Wirklichkeit muss man vor allem ihre Vernunft zur Geltung kommen lassen. Sie haben das Privileg einer vernünftigen Seele, das Gott den Tieren nicht gewährt hat, und müssen erkennen, dass sie besser gestellt sind als diese und dass sie sich durch vernünftiges Verhalten dafür erkenntlich zeigen müssen – Geschenke legen Verpflichtungen auf. Wem das Glück zuteilwird, vernünftig zu sein, der ist im Gegenzug verpflichtet, sich vernünftig zu verhalten. Deshalb darf man Kinder nicht einfach toben und Unfug treiben lassen, sondern muss sie nach Möglichkeit mit vernünftigen Spielen unterhalten, die Tiere nicht spielen können. Es ist nicht richtig, dass sie zu Hause wie Zicklein oder Böckchen spielen, und zwar nicht deshalb, weil Tiere verächtlich sind, denn das sind sie nicht, sondern deshalb, weil man Gott zeigen muss, dass man seine Gaben schätzt. Wenn Kinder aus der Schule nach Hause kommen, könnten sie zum Beispiel, statt herumzutollen, in der Zeit vor Abendessen und Schlafengehen ihren Eltern die geometrischen Figuren vorführen, die sie tagsüber in der Schule gebastelt haben. Dafür könnte man ihnen kleine Belohnungen für ihre Sparbüchse aussetzen.47

Die Kunst- und Tugendschule48

Weigels Schulversuche erfolgten in zwei Etappen. 1683 reiste er zum Reichstag nach Regensburg. Dort wurde seine »Unmaßgebliche Erinnerung« gut aufgenommen und später einigen Fürsten von ihren in Regensburg anwesenden Gesandten empfohlen. Weigel nennt mehrere Landesherren, die ihn ihrer Zustimmung versicherten. Daraufhin nahm er an, dass der von ihm geplante Schulversuch auch finanziell gesichert war, zumal da er sein Privathaus als Unterrichtsort zur Verfügung stellte49 – er organisierte den Versuch zur Überprüfung seiner pädagogischen Vorstellungen nach 1683 in seinem eigens dafür umgebauten Wohnhaus. Nur Kinder von zwei, drei oder höchstens vier Jahren durften teilnehmen, damit die vorhandenen Schulen keinen Nachteil hatten. Die ausgewählten Kinder sollten in vernünftiger Freude und »nicht in Thiereslust« unterrichtet werden, dabei in ständiger Tätigkeit (und nicht in ständigem Erleiden) bleiben und nur zur Tisch- und Schlafenszeit nach Hause kommen.50

An dem Versuch nahmen zehn Kinder teil; sie wurden anfangs von drei und später von zwei Lehrern in drei Klassen betreut. Für die meisten Personalkosten kam das Fürstlich-Sachsen-Jenische Consistorium auf, aber Weigel schoss einiges zu. Für seine Helfer schrieb er kurze Anweisungen zur Methode, für die Eltern Blätter mit Ratschlägen, wie sie den Schulversuch unterstützen konnten. Die Kinder wurden von besonders ausgewählten und ausgebildeten Lehrern unterrichtet. Anscheinend verlief der Versuch erfolgreich, wie Zeugnisse kompetenter Beobachter wie Christian Thomasius belegen. Professor Petrus Mueller erklärte, dass er nach einem Besuch der Schule seine Söhne zu seiner größten Zufriedenheit dort unterrichten ließ. Auch ein von der Behörde angefordertes Professorengutachten äußerte sich positiv. Gegner der Schule waren vor allem die Lehrer der Lateinschule in Jena; Weigel deutet an, dass vorgesehene Verbesserungen oft »durch die Bosheit der Schulleute« verhindert wurden. Auch gab es Schwierigkeiten mit den Lateinschülern. Sie rotteten sich zusammen, und wenn die Versuchsschule nachmittags schloss, riefen sie den kleinen Schülern nach: »Teutsche Michel!« Es kam zu Streit und Handgreiflichkeiten, und weil die Versuchsschüler dabei in der Minderheit waren, blieben schließlich immer mehr von ihnen zu Hause. Um dieser Misslichkeit zu begegnen, schulte Weigel nur noch sehr junge Kinder ein, die sich nichts aus den Schimpfwörtern machten, weil sie sie nicht verstanden. Er konzentrierte sich also auf die Unterrichtung von Kleinkindern.51

Da er das Projekt von 1683 als geglückt ansah, hielt er es für richtig, weitere Versuche mit fünfzig oder hundert Schülern zu organisieren. Auch diesmal nahm er nur Kinder von zwei, drei oder vier Jahren auf, die ohnehin zu keiner anderen Anstalt Zutritt hatten. Er brauchte jetzt mehr Platz für Klassen, vier hinreichend ausgebildete und besoldete Lehrer, geeignete Lehrmittel und schließlich ein paar Dienstboten, die die Kinder pflegen und in der Schule Hilfsdienste leisten sollten. Für den Unterricht wurde die Zeit von sieben oder acht Uhr morgens und von dreizehn bis achtzehn Uhr nachmittags angesetzt. Weigel stellte nach einem geeigneten Umbau auch diesmal sein Haus zur Verfügung. Er legte eine Spenderliste an, stellte jährliche Berichte in Aussicht und sah eine Vorlesung zur Ausbildung geeigneter Lehrkräfte vor. Der Kaiser beteiligte sich an den Spenden, auch Weigel steuerte wieder Mittel zu. Sobald die Finanzierung des zweiten Versuchs gesichert schien,52 wurde er ab 1689 in Form einer offenen Ganztagsschule durchgeführt. Sie hieß Kunst- und Tugendschule, denn sie sollte einerseits die Fertigkeiten der Kinder fördern (Kunst – Können) und andererseits zur moralischen Erziehung beitragen, also mehr leisten als übliche Elementarschulen, die in der Regel nur einen für den Alltag hinreichenden Wortschatz und ordentliches Sprechen und Schreiben vermittelten.

An den Wänden des neuen Unterrichtsraums hingen Bilder von Naturobjekten, die Decke war mit Sternbildern bemalt, auch gab es Darstellungen von Tieren und Pflanzen, und die Mechanik kam durch Abbildungen von Handwerksarbeiten und mathematischen Motiven zur Geltung. Dadurch glich der Raum einem der damals beliebten Naturalien- und Instrumentenkabinette53 und entsprach den Bestrebungen von Comenius, den Kindern einen Orbis pictus an die Hand zu geben. Weigel entwarf auch eigene Lehrmittel, deren Verwendung die Kinder in Bewegung und Tätigkeit hielt;54 die Fertigstellung nahm fast noch ein ganzes Jahr in Anspruch. Er konstruierte eine mechanische »Schreib- und Rechenregul« (»regula