31,19 €
MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments.
This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you’ll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins.
By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments.
Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:
Seitenzahl: 200
Veröffentlichungsjahr: 2021
Manage the end-to-end machine learning life cycle with MLflow
Natu Lauchande
BIRMINGHAM—MUMBAI
Copyright © 2021 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
Publishing Product Manager: Reshma Raman
Senior Editor: David Sugarman
Content Development Editor: Sean Lobo
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Sinhayna Bais
First published: August 2021
Production reference: 1220721
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-80056-079-6
www.packt.com
Natu Lauchande is a principal data engineer in the fintech space currently tackling problems at the intersection of machine learning, data engineering, and distributed systems. He has worked in diverse industries, including biomedical/pharma research, cloud, fintech, and e-commerce/mobile. Along the way, he had the opportunity to be granted a patent (as co-inventor) in distributed systems, publish in a top academic journal, and contribute to open source software. He has also been very active as a speaker at machine learning/tech conferences and meetups.
Hitesh Hinduja is an ardent AI enthusiast working as a Senior Manager in AI at Ola Electric, where he leads a team of 20+ people in the areas of machine learning, deep learning, statistics, computer vision, natural language processing, and reinforcement learning. He has filed 14+ patents in India and the US and has numerous research publications under his name. Hitesh has been associated in research roles at India's top B-schools: Indian School of Business, Hyderabad, and the Indian Institute of Management, Ahmedabad. He is also actively involved in training and mentoring and has been invited as a guest speaker by various corporates and associations across the globe.
This section will introduce you to a framework for stating machine learning problems in a concise and clear manner using MLflow.
The following chapters are covered in this section:
Chapter 1, Introducing MLflowChapter 2, Your Machine Learning Project