139,99 €
Air Traffic Management involves many different services such as Airspace Management, Air Traffic Flow Management and Air Traffic Control. Many optimization problems arise from these topics and they generally involve different kinds of variables, constraints, uncertainties. Metaheuristics are often good candidates to solve these problems.
The book models various complex Air Traffic Management problems such as airport taxiing, departure slot allocation, en route conflict resolution, airspace and route design. The authors detail the operational context and state of art for each problem. They introduce different approaches using metaheuristics to solve these problems and when possible, compare their performances to existing approaches
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 313
Veröffentlichungsjahr: 2015
Cover
Title
Copyright
Introduction
1 The Context of Air Traffic Management
1.1. Introduction
1.2. Vocabulary and units
1.3. Missions and actors of the air traffic management system
1.4. Visual flight rules and instrumental flight rules
1.5. Airspace classes
1.6. Airspace organization and management
1.7. Traffic separation
1.8. Traffic regulation
1.9. Airspace management in en route air traffic control centers
1.10. Air traffic flow management
1.11. Research in air traffic management
2 Air Route Optimization
2.1. Introduction
2.2. 2D-route network
2.3. A network of separate 3D-tubes for the main traffic flows
2.4. Conclusion on air route optimization
3 Airspace Management
3.1. Airspace sector design
3.2. Functional airspace block definition
3.3. Prediction of air traffic control sector openings
4 Departure Slot Allocation
4.1. Introduction
4.2. Context and related works
4.3. Conflict-free slot allocation
4.4. Results
4.5. Concluding remarks
5 Airport Traffic Management
5.1. Introduction
5.2. Gate assignment
5.3. Runway scheduling
5.4. Surface routing
5.5. Global airport traffic optimization
5.6. Conclusion
6 Conflict Detection and Resolution
6.1. Introduction
6.2. Conflict resolution complexity
6.3. Free-flight approaches
6.4. Iterative approaches
6.5. Global approaches
6.6. A global approach using evolutionary computation
6.7. A global approach using ant colony optimization
6.8. A new framework for comparing approaches
6.9. Conclusion
Conclusion
Bibliography
Index
End User License Agreement
Cover
Table of Contents
Begin Reading
1 The Context of Air Traffic Management
Figure 1.1.
Air traffic forecast in
Europe.
Figure 1.2.
FIRs in Europe
Figure 1.3.
Functional airspace blocks in Europe. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 1.4.
Top and sectional view of Paris TMA (2011). For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 1.5.
En route, approach and airport control. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 1.6.
Routes and airspace sectors in Europe (2009), in the upper airspace. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 1.7.
Aircraft conflict
Figure 1.8.
An example of 4-aircraft conflict (cluster)
Figure 1.9.
Intuitive approach of ATC complexity
Figure 1.10.
Factors impacting the air traffic controller workload
.
Figure 1.11.
Example of an HMI displaying sector opening schemes. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 1.12.
“Monitoring values” for the “occupancy count” metric
Figure 1.13.
Eurocontrol CHMI/CIFLO interface for FMPs
2 Air Route Optimization
Figure 2.1.
Crossing points of the direct routes of traffic flows above 10 flights per day. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 2.2.
Clustering process applied to crossing points. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 2.3.
Voronoï diagram applied to the clusters barycenters. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 2.4.
Delaunay triangulation of the clusters barycenters. For a color version of the figure, see
www.iste.co.uk/durand/atm.zip
Figure 2.5.
Air route network found by a simulated annealing (right), starting from an initial regular grid (left)
Figure 2.6.
A simplified model of 3D-trajectory
Figure 2.7.
Possible lateral (left) or vertical deviations (right)
Figure 2.8.
Example of area used to compute the transition cost
Figure 2.9.
Vertical profile with smallest deviation cost between d and arrival, and area used to compute the heuristic
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!