Sciopticon: Einführung in die Projections-Kunst - Liesegang, Franz Paul - kostenlos E-Book

Sciopticon: Einführung in die Projections-Kunst E-Book

Liesegang, Franz Paul

0,0
0,00 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Gratis E-Book downloaden und überzeugen wie bequem das Lesen mit Legimi ist.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 110

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



The Project Gutenberg EBook of Sciopticon, by Franz Paul LiesegangThis eBook is for the use of anyone anywhere at no cost and withalmost no restrictions whatsoever.  You may copy it, give it away orre-use it under the terms of the Project Gutenberg License includedwith this eBook or online at www.gutenberg.orgTitle: Sciopticon       Einführung in die Projections-KunstAuthor: Franz Paul LiesegangRelease Date: February 20, 2014 [EBook #44972]Language: German*** START OF THIS PROJECT GUTENBERG EBOOK SCIOPTICON ***Produced by Alexander Bauer, Matthias Grammel, Norbert H.Langkau and the Online Distributed Proofreading Team athttp://www.pgdp.net

Sciopticon

Einführung

in die

Projections-Kunst.

Düsseldorf.

Ed. Liesegang's Verlag.

1896.

Sciopticon

Einführung

in die

Projections-Kunst.

INHALT:

SeiteSciopticon1Sciopticonlampe11Kalklicht18Electrisches Licht41Projectionsbild45Doppel-Sciopticon (Nebelbilder-Apparat)54Dreifache Laterne56Wundercamera56Wissenschaftl. Projectionen59

Düsseldorf.

Ed. Liesegang's Verlag.

1896.

Alphabetisches Inhaltsverzeichniss.

SeiteAgioscop,56Alkohol-Sauerstoff,30, 38Bild,45  — Grösse desselben,48Bildhalter,9, 46Condensor,5Docht,13Doppel-Sciopticon,54Dreifache Laterne,56Dunkler Raum,47Einstellen,52Electrisches Licht,3, 41Gasglühlicht,4Gasometer,23Gassäcke,22Generator,19Kalkcylinder,33Kalkhalter,34Kalklicht,3, 18  — Handhabung desselben,35Kalklichtbrenner,29Laternenbild,45Lichtquelle,2Magnesiumlicht,4Nebelbilder-Apparate,54Objectiv,9Petroleum,13Petroleumlicht,3Projectionsapparat,1Projectionsbild,45Projection undurchsichtiger Gegenstände,56Retorte,19Sauerstoffbereitung,18Sciopticon,1, 5Sciopticonlampe,11Sicherheitsbrenner,30, 35Sicherheits-Retorte,19Wand,47Wasserstoffbereitung,27Wissenschaftl. Projectionen,59Wundercamera,56

Wer erinnert sich nicht aus seiner Jugendzeit der Laterna magica! Manchem hat sie damals viele vergnügte Stunden bereitet. Aber dann hat man ihr den Rücken gekehrt; man verliess den Spielgefährten und vergass ihn.

Jahrelang haben wir unseren Jugendgenossen nicht gesehen. Jetzt treffen wir ihn wieder. Aber wir können ihn kaum erkennen: so hat er sich verändert. Er ist indess den Kinderschuhen entwachsen und zum Manne gereift. Von neuem bietet er uns seine Freundschaft an. — Und was verspricht er uns! — — — —

In Familien, Vereinen und in Schulen — überall bürgert sich die Projectionskunst mehr und mehr ein. Hier bietet sie anregende Unterhaltung, dort hinwieder dient sie zur Belehrung. Stets wird das Sciopticon mit Freuden begrüsst.

Und was giebt es auch schöneres als eine Vorstellung mit dem Projections-Apparat, was ist interessanter als die Vorführung einer Serie von Laternenbildern, zumal wenn sie durch fesselnde Worte erläutert werden!

Andererseits, wie leicht kann man Andern und sich selbst dieses Vergnügen bereiten — hier ist kein besonderes Geschick erforderlich.

Ganz ohne Kenntniss sollte der Anfänger zwar nicht daran gehen; er thut gut, sich über die Apparate und deren Handhabung zu unterrichten.

Darin soll ihn dies Büchlein unterstützen. Er findet hier nicht die Verfahren zur Herstellung von Laternenbildern, nicht die Beschreibung von Experimenten u. dergl.: das kann er an anderer Stelle nachlesen. Dieses Büchlein soll ihn nur mit den Apparaten bekannt machen und ihn anweisen, wie sie zu handhaben sind.

Möge es diese Aufgabe erfüllen!

F. P. Lg.

Das Sciopticon

Fig. 1. Projectionsapparat.

oder die Projections-Laterne — eine neue, vervollkommnete Form der alten Laterna magica — dient dazu, um von Glasbildern, welche in den Apparat gesetzt werden, ein vergrößertes Bild auf die Wand zu werfen. Das Instrument besteht im wesentlichen aus der Lichtquelle, einem Linsensystem, welches die Lichtstrahlen sammelt und auf den Gegenstand leitet (dem Condensor), und einem zweiten Linsensystem (dem Objectiv), welches von dem Gegenstand ein vergrössertes Bild auf die Wand projicirt. Figur 1 zeigt die Anordnung eines Projections-Apparates. Bei L ist die Lichtquelle, I, II und III sind die Linsen des Condensors, O das Objectiv. Der kleine Pfeil stellt den zu projicirenden Gegenstand (das Glasdiapositiv) dar, der grosse Pfeil das Bild desselben auf der Wand.

Man sieht aus der Abbildung, dass man auf der Wand ein umgekehrtes Bild erhält; damit es aufrecht wird, muss man also das Laternenbild umgekehrt in den Apparat einsetzen. Die alte Laterna magica hatte dieselbe Einrichtung; nur waren die einzelnen Theile sehr unvollkommen, und daher liess sich ein gutes Bild nicht damit erreichen.

Ein Projections-Apparat, der etwas Brauchbares liefern soll, muss ein gutes optisches System (Condensor und Objectiv) und vor allem eine gute

Lichtquelle

haben. Am meisten geeignet wäre das directe Sonnenlicht. Doch steht uns dasselbe nicht immer zur Verfügung, am wenigsten gerade dann, wenn wir es brauchen. Man muss daher künstliches Licht benutzen.

Die Anforderungen, welche an die Lichtquelle gestellt werden, sind erstens grosse Helligkeit und zweitens möglichst geringe Ausdehnung: theoretisch müsste die Lichtquelle ein Punkt sein. Es kommen für uns in Betracht das Petroleumlicht, das Kalklicht und das electrische Bogenlicht. Die anderen Lichtquellen sind für Projectionszwecke unbrauchbar.

Das Petroleumlicht kommt überall dort zur Verwendung, wo es sich um die Herstellung von Bildern massiger Grösse (bis zu 2 Meter oder höchstens 3 Meter im Durchmesser) handelt, und hierfür ist es auch die geeignetste Lichtquelle. Für den Familien- oder Bekanntenkreis, für Schulen und kleinere Vereine ist die Petroleumbeleuchtung meist völlig ausreichend. Ausserdem ist die Handhabung äusserst einfach, Petroleum ist überall zu haben und die Lampe ist stets fertig zum Gebrauch.

Das Kalklicht ist zu Projectionszwecken das schönste Licht. Es wird dort benutzt, wo grössere Bilder verlangt werden. Das Kalklicht wird erzeugt, indem man ein Gemisch von Sauerstoff und Wasserstoff unter Druck auf ein Stück gebrannten Kalk leitet und entzündet. Das Kalkstück wird dadurch zu einer intensiven Weissgluth gebracht; es giebt ein sehr helles, weisses und ruhiges Licht, welches hinreichend concentrirt ist.

An Stelle des Wasserstoffgases kann auch Leuchtgas aus der Gasleitung oder in Ermangelung desselben Alcoholdämpfe benutzt werden. Die Darstellung des Sauerstoffes ist höchst einfach und völlig ungefährlich.

Das electrische Bogenlicht entspricht den Anforderungen, welche an die Lichtquelle gestellt werden, am meisten. Es ist äusserst intensiv und sehr concentrirt: fast ein Punkt. Doch ist das electrische Licht für Laternenbilder nicht so geeignet wie das Kalklicht: es ist einmal zu intensiv und macht die Bilder hart und unharmonisch, zum andern hat es einen bläulichen Schein, der leicht die Wirkung der Bilder schädigt und für die Augen sogar unangenehm sein kann.

Für das Projections-Microscop und für die Projection wissenschaftlicher Experimente hingegen ist das electrische Bogenlicht sehr brauchbar. Die Verwendung des electrischen Lichtes kann natürlich nur in Frage kommen, wenn man hinreichend starken electrischen Strom zur Verfügung hat und dort wird sie sich auch empfehlen; eine besondere Anlage würde sehr kostspielig sein.

Andere Lichtquellen, wie das Magnesiumlicht und Gasglühlicht, kommen für uns nicht in Betracht. Das Magnesiumlicht lässt sich nicht genügend ruhig oder stabil herstellen und erzeugt ausserdem einen weissen Rauch, der den ganzen Apparat beschlägt; bei dem Gasglühlicht ist die Lichtmenge auf eine viel zu grosse Fläche vertheilt, auch nimmt die Helligkeit des Lichtes bald ab.

In den meisten Fällen kommt entweder Petroleumlicht oder Kalklicht zur Verwendung; Petroleumlicht, wenn eine mässige Vergrösserung (bis zu 2 Meter, höchstens 3 Meter) ausreicht, Kalklicht dort, wo grössere Bilder verlangt werden.

Der Bau des Sciopticons

ist so eingerichtet, dass jede der drei Lichtquellen, Petroleumlicht, Kalklicht sowie electrisches Bogenlicht zur Verwendung kommen kann. Die Projections-Laternen sind aus Stahlblech (nicht aus leicht rostendem Eisenblech) construirt; die Fassungen sind aus Messing gefertigt oder gut vernickelt. Der Körper der Laterne hat oben eine Oeffnung für den Schornstein der Petroleumlampe. An der Rückseite befindet sich eine Thüre, welche sich seitlich oder nach oben hin öffnen lässt. Der in Figur 2 dargestellte Apparat hat noch an jeder Seite eine Thür: dieselben kommen zur Verwendung, wenn Kalklicht benutzt wird.

An der vorderen Seite des Körpers befindet sich der Condensor. In Figur 3, welche uns ein Sciopticon älterer Construction mit zweidochtiger Petroleumlampe zeigt, sehen wir denselben im Durchschnitt. Der Condensor besteht aus zwei planconvexen Linsen (p und q), deren gewölbte Seiten einander zugekehrt sind. Man hat auch Condensoren construirt, welche aus 3 Linsen bestehen; sie haben vor den Doppel-Condensoren jedoch nur einen Vortheil, wenn es sich um Linsen von sehr grossem Durchmesser handelt. Die erforderliche Grösse des Condensors richtet sich nach dem Format der Bilder, welche man projiciren will. Die im Handel befindlichen Laternenbilder sind durchgängig 7 cm hoch und 7 cm breit — mit abgerundeten Ecken. Es kommt dies daher, dass die Negative früher nicht besonders für den Projectionsapparat, sondern zugleich zum Gebrauche für das Stereoscop aufgenommen wurden, und so hat sich dieses Format eingebürgert. Die meisten Sciopticons sind für diese Bilder berechnet und haben dementsprechend einen Condensor von 10 cm Durchmesser.

Fig. 2. Sciopticon mit vierdochtiger Lampe.
Fig. 3. Sciopticon.

Für den Amateur-Photograph, der sich seine Laternenbilder selber anfertigt, ist dieses Format unbequem, da es im Handel keine Platten von diesen Dimensionen giebt. Doch lägst sich vielfach von den Bildern etwas abschneiden oder man kann sie leicht durch Verkleinern auf dieses Format bringen. Wer seine Bilder so projiciren will, wie er sie aufgenommen hat, braucht natürlich ein Sciopticon mit entsprechend grösserem Condensor. Für Bilder vom Formate 9 × 12 muss der Condensor z. B. einen Durchmesser von 15 cm haben, wie es bei Liesegang's Projections- und Vergrösserungs-Laterne Modell B. der Fall ist.

Fig. 4. Sciopticon mit fünfdochtiger Lampe.

Auf einem besonderen verschiebbaren Gestell an der Vorderseite des Sciopticons befindet sich das Objectiv — in der Regel ein Doppel-Objectiv. Die Vorderlinsen desselben (a und b Fig. 3) sind verkittet, die Hinterlinsen (c und d) sind durch einen Ring getrennt. Wenn man die Linsen aus der Fassung geschraubt hat, um sie zu reinigen — was übrigens sehr wichtig ist —, so vergesse man nicht, sie nachher wieder richtig einzusetzen (so, wie die Abbildung es angiebt), sonst erhält man ein unscharfes Bild. In vielen Fällen ist es vortheilhaft, ein Objectiv von kurzer Brennweite zu verwenden, welches bei gleicher Entfernung (Apparat von Wand) ein grösseres Bild giebt, wie z. B. Liesegang's Tachyscop C 20. Dasselbe ist gleichzeitig ein vorzügliches Objectiv für Momentaufnahmen und ausserordentlich geeignet zu Aufnahmen von Laternen- wie Stereoscopbildern.

Direct vor den Condensor (bei 00', Fig. 3) wird das Bild oder vielmehr der Bildhalter eingesetzt; er wird durch Federn gehalten. An Stelle des Bildhalters kann man auch eine Glas-Cüvette einsetzen, in der sich manche interessante chemische Versuche vornehmen lassen.

Bei dem auf Seite 6 abgebildeten Sciopticon, wo der Objectivträger durch eine Schraube (unterhalb des Objectivs) bewegt wird, klemmt man den Bildhalter zwischen die Fassung des Condensors und den Objectivträger. Das Einsetzen des Bildhalters wird dadurch sehr erleichtert; ausserdem kann man bei dieser Anordnung Instrumente jeder Art in den Apparat bringen und wissenschaftliche Experimente projiciren — man braucht bloss den Objectivträger hinreichend weit vorzuschrauben. Zum Scharfstellen des Bildes ist das Objectiv mit einem Triebe versehen.

In den Körper des Sciopticons wird von der Rückseite her die Petroleumlampe, der Kalklichtbrenner oder die electrische Bogenlampe eingeschoben.

Die Sciopticonlampe

besteht zunächst aus einem flachen, rechteckigen Petroleumbehälter. Er fasst soviel Petroleum, als für ein Paar Stunden ausreichend ist. Das Petroleum wird eingegossen durch einen Hals, dessen Oeffnung sich durch eine Schraube schliessen lässt. Mitten auf dem Behälter sind nebeneinander die Dochtführungen — 3 bis 5 an der Zahl — angebracht, welche die 4 oder 5 cm breiten Dochte fassen. Die Führungen sind nach oben hin etwas gegeneinander geneigt, sodass die Flammen gegeneinander geleitet werden. Das Höher- und Tieferdrehen der Dochte geschieht mit Hülfe von Schrauben an der Rückseite der Lampe. Der Zwischenraum zwischen den Dochten ist geschlossen durch ein Blech, welches vielfach durchbohrt ist, um Luft zutreten zu lassen.

Die Flammenkammer oder der Brennerkasten wird gebildet durch einen Stahlblechcylinder; er ist unten am Petroleumbehälter mittelst eines Charniers befestigt und lässt sich nach der Seite umklappen. Vorne und hinten ist die Flammenkammer durch eine Glasscheibe geschlossen; dieselben verhindern den Luftzutritt von der Seite. Die Gläser dürfen nicht fehlen, da sonst die Flamme schwalkt. Ausserdem dient die vordere Glasscheibe zum Schutze des Condensors — um denselben nämlich vor zu starker Erhitzung und damit vor dem Zerspringen zu bewahren.

Hinter der Glasscheibe an der Rückseite befindet sich ein Reflector, der die Wirkung des Lichtes verstärken soll. In der Mitte desselben ist ein kleines Fenster mit einem gefärbten Glase angebracht, wodurch man jederzeit das Licht beobachten kann, ohne die Augen anzustrengen.

In der Flammenkammer befindet sich eine Kappe, welche über die Dochte gestülpt wird; sie hat in der Mitte eine längliche Oeffnung, durch welche die flachen Flammen herausbrennen. Die Vorrichtung hat den Zweck, die äusseren Flammen gegen die mittleren zu leiten: die Flammen, welche von unten her (aber auch bloss von dort her) in ausgiebiger Weise mit Luft gespeist werden, einzuschnüren und so die Intensität des Lichtes auf einen möglichst kleinen Raum zu vereinen.

Auf die Flammenkammer wird ein Schornstein aufgesetzt, welcher für gehörigen Luftzug sorgt; er besteht aus zwei Theilen, welche ineinander gleiten. Je weiter sie auseinander gezogen werden, umsomehr Zug hat die Flamme. Oben auf dem Schornstein befindet sich ein Deckel, welcher die Lichtstrahlen absperrt, ohne jedoch dem Luftzug Eintrag zu thun.

Die Sciopticonlampe wird von hinten her in den Apparat eingeschoben; sie hat unten, rechts und links, eine schmale Blechleiste, welche in einer entsprechenden Führung am Boden des Sciopticons läuft. Dadurch ist der Lampe genügender Halt gegeben.

Die Behandlung der Sciopticonlampe

ist zwar sehr einfach, erfordert aber immerhin einige Sorgfalt. Vor allem verwende man nur gutes Petroleum. Man begnüge sich nicht damit, solches im Laden zu verlangen, sondern überzeuge sich auch davon. Gereinigtes Petroleum ist durchsichtig und farblos, im reflectirten Licht hat es einen bläulichen Stich.

Beim Eingiessen achte man darauf, dass nichts überschüttet wird; man thut gut, einen Trichter zu benutzen. Nach dem Füllen wird der Deckel fest aufgeschraubt und die Lampe mit einem trockenen Lappen sorgsam rein geputzt. Falls dies unterbleibt, so darf man sich nicht wundern, wenn sich während der Vorstellung ein unangenehmer Geruch bemerkbar macht: die Lampe wird allmählich heiss, und wenn sich irgendwo etwas Petroleum angesetzt hat — sollte es auch nur sehr wenig sein —, so wird dasselbe verflüchtigt.

Die Dochte