169,99 €
In recent years, the utilization of terpyridines both in macromolecular structure assembly and device chemistry has exploded, enabling, for
example, supramolecular polymer architectures with switchable chemical and physical properties as well as novel functional materials
for optoelectronic applications such as light-emitting diodes and solar cells. Further applications include the usage of terpyridines and their
metal complexes as catalysts for asymmetric organic reactions and, in a biological context, as anti-tumor agents or biolabels. This book covers terpyridine-based materials topics ranging from syntheses, chemistry, and multinuclear metal complexes, right up to functionalized polymers, 3D-architectures, and surfaces. Aimed at materials scientists, (in)organic chemists, polymer chemists, complex chemists, physical chemists, biochemists, and libraries.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 889
Veröffentlichungsjahr: 2012
Contents
Preface
List of Abbreviations
Chapter 1: Introduction
Chapter 2: Synthesis, Properties, and Applications of Functionalized 2,2′:6′,2″-Terpyridines
2.1 Introduction
2.2 Basic Synthetic Strategies
2.3 Synthesis and Properties of 2,2′:6′,2″-Terpyridine Derivatives
2.4 2,2′:6′,2″-Terpyridines Symmetrically Substituted on the Outer Pyridine Rings
2.5 Ziessel-Type 2,2′:6′,2″-Terpyridines
2.6 Kröhnke-Type 2,2′:6′,2″-Terpyridines
2.7 Miscellaneous Terpyridine-Analogous Compounds
Chapter 3: Chemistry and Properties of Terpyridine Transition Metal Ion Complexes
3.1 Introduction
3.2 Basic Synthetic Strategies and Characterization Tools
3.3 Ru II and Os II Complexes
3.4 Iridium(III) Complexes with Terpyridine Ligands
3.5 Platinum(II) Mono(terpyridine) Complexes
Chapter 4: Metallo-Supramolecular Architectures Based on Terpyridine Complexes
4.1 Introduction
4.2 Terpyridine-Containing Metallo-Macrocycles
4.3 The HETTAP Concept
4.4 Racks and Grids
4.5 Helicates
4.6 Rotaxanes and Catenanes
4.7 Miscellaneous Structures
Chapter 5: π-Conjugated Polymers Incorporating Terpyridine Metal Complexes
5.1 Introduction
5.2 Metallo-Supramolecular Polymerization
5.3 Metallopolymers Based on π-Conjugated Bis(terpyridine)s
5.4 Main-Chain Metallopolymers Based on Terpyridine-Functionalized π-Conjugated Polymers
Chapter 6: Functional Polymers Incorporating Terpyridine-Metal Complexes
6.1 Introduction
6.2 Polymers with Terpyridine Units in the Side-Chain
6.3 Polymers with Terpyridines within the Polymer Backbone
Chapter 7: Terpyridine Metal Complexes and their Biomedical Relevance
7.1 Introduction
7.2 Terpyridine Metal Complexes with Biological Activity
Chapter 8: Terpyridines and Nanostructures
8.1 Introduction
8.2 Terpyridines and Surface Chemistry
8.3 Terpyridines and Inorganic Nanomaterials
8.4 Terpyridines and Nano-Structured TiO 2: Photovoltaic Applications
8.5 Organopolymeric Resins, Beads, and Nanoparticles
Chapter 9: Catalytic Applications of Terpyridines and Their Transition Metal Complexes
9.1 Introduction
9.2 (Asymmetric) Catalysts in Organic Reactions
9.3 Electrocatalytic Oxidation and Reduction Processes
9.4 Photocatalytic Processes
Chapter 10: Concluding Remarks
Index
Related Titles
Decher, G., Schlenoff, J. B. (eds.)
Multilayer Thin Films
Sequential Assembly of Nanocomposite Materials
2012
ISBN: 978-3-527-31648-9
Steed, J. W., Gate, P.
Supramolecular Chemistry
From Molecules to Nanomaterials
2012
ISBN: 978-0-470-74640-0
Martin, N., Nierengarten, J.-F. (eds.)
Supramolecular Chemistry of Fullerenes and Carbon Nanotubes
2012
ISBN: 978-3-527-32789-8
Harada, A. (ed.)
Supramolecular Polymer Chemistry
2012
ISBN: 978-3-527-32321-0
Samori, P., Cacialli, F. (eds.)
Functional Supramolecular Architectures
For Organic Electronics and Nanotechnology
2011
ISBN: 978-3-527-32611-2
Guldi, D. M., Martín, N. (eds.)
Carbon Nanotubes and Related Structures
Synthesis, Characterization, Functionalization, and Applications
2010
ISBN: 978-3-527-32406-4
Geckeler, K. E., Nishide, H. (eds.)
Advanced Nanomaterials
2010
ISBN: 978-3-527-31794-3
Laguna, A. (ed.)
Modern Supramolecular Gold Chemistry
Gold-Metal Interactions and Applications
2008
ISBN: 978-3-527-32029-5
The Authors
Prof. Dr. Ulrich S. Schubert
Friedrich-Schiller-University Jena
Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)
Humboldtstr. 10
07743 Jena
Germany
Dr. Andreas Winter
Friedrich-Schiller University Jena
Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)
Humboldtstraße 10
07743 Jena
Germany
Prof. Dr. George R. Newkome
The University of Akron
Departments of Polymer Science and Chemistry & The Maurice Morton Institute of Polymer Science
Akron, OH, 44325-4717
USA
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
2011 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Cover Design Formgeber, Eppelheim
Print ISBN: 978-3-527-33038-6
ePDF ISBN: 978-3-527-63964-9
ePub ISBN: 978-3-527-63963-2
Mobi ISBN: 978-3-527-63965-6
oBook ISBN: 978-3-527-63962-5
Preface
Over the past few decades, supramolecular chemistry, that is, the self-assembly of molecules into complex architectures based on weak secondary interactions (e.g., metal-to-ligand coordination or hydrogen bonding), has evolved from a primary scientific field into daily-life applications. In particular, the combination of transition metal ions with N-heteroaromatics, as ligands, has rapidly moved to the center of attention in laboratories around the world. As one of the most prominent representatives of this family, terpyridine was discovered in 1931 and has been shown to lend itself to the construction of specific, stable metal complexes with unique properties that can easily be tuned by the choice of the metal ion and/or the structural modification. An overview of the syntheses and early applications of the parent and substituted 2,2′:6′,2″-terpyridines was given in the book Modern Terpyridine Chemistry in 2006. The emerging applications in the fields of polymer science, optoelectronic devices, medicinal chemistry, nanotechnology, and molecular catalysis prompted us to review the utilization of terpyridine-based materials in more detail and with respect to current applications.
We have attempted to compile the key examples in each field to assist and help future researchers in this arena; many excellent examples are available and support the rationale for continued exploitation of this family of heterocyclic compounds, but we must admit that not all of them could be chosen due to space constraints. Therefore, we apologize in advance to those authors whose work has not been incorporated.
The authors would be, as always, most grateful to know of any errors, which may have crept into the manuscript despite the multiple proofreading by many of our colleagues. We also thank our spouses, relatives, and friends for their patience and assistance in completing this work.
Jena and Akron, July 2011
Ulrich S. Schubert
Andreas Winter
George R. Newkome
List of Abbreviations
A2780human ovarian carcinoma cellsA-498human kidney carcinoma cellsA-549human lung carcinoma cellsAASatomic absorption spectroscopyacacacetylacetonateACIaverage current intensityAFMatomic force microscopyAIBN2,2′-azobisiso-butyronitrileAlq3tris(8-hydroxyquinoline)aluminumAPaminopentanolAPCEabsorbed photon-to-current efficiencyATRPatom-transfer radical polymerizationAUCanalytical ultracentrifugationBAbutyl acrylateBCPbond critical pointBEL-7420human hepato carcinoma cellsBGC-823human gastric gland carcinoma cellsBINOL1,1′-binaphth-2-olbip2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridinebip-OH2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridin-4-olbmim-PF61-butyl-3-methylimidazolium hexafluorophosphateBNCTboron neutron capture therapyBODIPYboron-dipyrrometheneBPGbasal plane pyrolytic graphitebpm2,2′-bipyrimidinebpp1,4-bis(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)benzenebpy2,2′-bipyridinebpz2,2′-bipyrazineBSAbovine serum albuminBTBbipyridine-terpyridine-bipyridinebtp1,4-bis(2,6-bis(1-butyl-1H-1,2,3-triazol-4-yl)pyridin-4-yl)-benzene or 4,4′-di(tert-butyl)-2,2′-bipyridine or 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine(s)btpyan1,8-bis(2,2′:6′,2“-terpyridin-4-yl)anthracenebzimpy2,6-bis(benzimidazol-2-yl)pyridineC13human ovarian carcinoma cellsCALBlipase B from Candida antarcticaDACdeoxycholic acidCCAACCuI-catalyzed alkyne-azide cycloaddition (reaction)CCD19Luhuman normal pulmonary cellCDcircular dichroismCDIN,N′-carbonyldiimidazoleCFScompetitive fluorescence spectroscopyCH1human larynx and pharynx cancerCIECommision International d’EclairageCITScurrent imaging tunneling spectroscopyC^N^Nmono-cyclometalating tridentate (ligand)CNTcarbon nanotubeCODcycloocta-1,5-dieneCRPcontrolled radical polymerizationcryo-TEMcryogenic transition electron microscopyCScharge-separatedCSFcompetitive fluorescence spectroscopyctcalf thymusCTcharge-transferCTAchain-transfer agentCVcyclic voltammetryCVPchemical vapor depositionCystcystineCyt-ccytochrome-cCzMA2-(N-carbazolyl)ethyl methacrylatedbadibenzylideneacetoneDCAdeoxycholic acidDEDTCdiethyldithiocarbamateDFTdensity functional theoryDHPdi(hexadecyl)phosphate or 1,4-dihydropyridinediaddi(iso-propylazo)dicarboxylateDLSdynamic light scatteringdmbpy4,4′-dimethyl-2,2′-bipyridineDMF or dmfN,N-dimethylformamideDMPO5,5-dimethyl-1-pyrroline-N-oxideDMSO or dmsodimethylsulfoxideDNAdeoxyribonuleic acidDOSYdiffusion-ordered spectroscopy (NMR)DPdegree-of-polymerizationD-P-Adonor-photosensitizer-acceptor (array)dpp2,4-di(pyridin-2-yl)pyrazolate or 2,9-diphenyl-1,10-phenanthrolinedppenecis-1,2-bis(diphenylphosphino)ethylenedppf1,1′-bis(diphenylphosphino)ferroceneDPVdifferential pulse voltammetrydpbq8,8′-diphenyl-3,3′-biisoquinolinedpp2,9-diphenyl-1,10-phenanthrolinedppf1,1′-bis(diphenylphosphino)ferrocenedppt5,6-diphenyl-3-(phenanthrolin-2-yl)-1,2,4-triazinedppzdipyrido[3,2-a:2′,3′-c]phenazinedppzp6′-(2″-pyridyl)dipyrido[3,2-a:2′,3′-c]phenazineDSdegree-of-substitutionDSBdouble-strand breakDSCdifferential scanning calorimetryDSSCdye-sensitized solar cellDTCdithiocarbamateDTEdithienyletheneE0-0zero-zero spectroscopic energyEDAethyl diazoacetateEDOT3,4-ethylenedioxythienylEDTAethylenediaminetetraacetic acidEHMOextended Hückel molecular orbitalEIelectron ionization (mass spectrometry)EF(luminescence) enhancement factorELelectroluminescenceemim-I1-ethyl-3-methylimidazolium iodideEPMAelectron probe microanalysis (spectrum)EPRelectron paramagnetic resonance (spectroscopy)EPTelectron/proton-transferESIelectrospray ionizationETelectron-transferEthBrethidium bromideEVSA-Thuman breast cancer cellsEWGelectron-withdrawing groupFcferroceneFFfill factorFIDfluorescent intercalator displacementFSFremy’s salt (potassium nitrosodisulfonate)FTICRFourier-transform ion cyclotron resonanceFTOfluorine-doped tin oxideFWHMfull width at half maximumGlyglycineGMPguanosine 5′-monophosphateGRglutathione reductaseGSground stateGSHglutathioneH226human non-small lung cancer cellsHBChexa-peri-hexabenzocoroneneHCT-116, -15human colon adenocarcinoma cellsHEEDTAsodium salt of N-hydroxyethylethylenediamine triacetic acidHeLacervical cancer cells from Henrietta LacksHepG2human liver carcinoma cellHEThelix-extension (parameter)HETPHENheteroleptic phenanthroline (complexation)HETTAPheteroleptic terpyridine and phenanthroline (complexation)HL-60human promyelocytic leukemia cellsHOMOhighest occupied molecular orbitalHOPGhighly-ordered pyrolytic graphiteHShigh-spin (state)HSAhuman serum albuminHT-29human colon adenocarcinoma cellsHTelohuman telomeric (DNA sequence)hTrxthioredoxinhTrxRthioredoxin reductaseHWEHorner-Wadsworth-Emmons (condensation reaction)Iscshort circuit currentIC50half maximal inhibitory concentrationICPinductively coupled plasma (mass spectrometry)IDAinterdigitated (microelectrode) arrayIETinterfacial electron transferIGROVhuman ovarian carcinoma cellsILintraligandILCTintraligand charge-transferIPCEincident photon-to-current conversion efficiencyIREiron regulatory elementITCisothermal titration calorimetryITEinterfacial electron transferITOindium tin oxideJcurrent densityKBhuman epidermoid cancer cellsKBbinding constantK0ion-free binding constantKSVStern-Volmer constantLluminanceL1210murine leukemia cellLASlight absorption sensitizerLBLangmuir-BlodgettLBLlayer-by-layerLCligand-centered or liquid crystallineLCSTlower critical solution temperatureLDlinear dichroism (spectroscopy)LDAlithium di(iso-propyl)amideLFlactoferrinLHElight harvesting efficiencyLIESSTlight-induced excited-state spin-trappingLLCTligand-to-ligand charge-transferL/L0relative contour lengthLSlow-spin (state)LUMOlowest unoccupied molecular orbitalM19 MELhuman melanoma cellsMALDI-TOFmatrix-assisted laser desorption/ionization time-of-flight (mass spectrometry)MCmetal-centeredMCF-7human breast cancer cellsmCPBAm-chloroperbenzoic acidMeCNacetonitrileMeCysS-methylcysteineMEFmetal-enhanced fluorescenceMEMSmicro-electro-mechanical systemsMEPEmetallo-supramolecular polyelectrolytesmes2,4,6-trimethylphenyl (mesityl)MFmelamine formaldehydeMLCTmetal-to-ligand charge-transferMLLCTmetal-ligand-to-ligand charge-transferMMAmethyl methacrylateMMMmolecular monolayer memory (device)MMNVMmolecular monolayer non-volatile memory (devices)Mnnumber-average molar massMOmolecular orbitalMPEGpoly(ethylene oxide) monomethyl etherMRImagnetic resonance imagingMSmass spectrometryMV2+1,1′-dimethyl-4,4′-bipyridinium, methyl viologenMWmolecular wireMWNTmulti-walled carbon nanotubesNCI-H460human lung carcinoma cellsNDRnegative differential resistanceNEMN-ethylmorpholineNHEnormal hydrogen electrodeNLOnon-linear opticsNMPnitroxide-mediated polymerization orN-methylpyrrolidoneNMRnuclear magnetic resonance (spectroscopy)N^Nbidentate N-heteroaromatic ligandN^N^Ntridentate (ligand)ODNoligodeoxynucleotideODTn-octadecanethiolOEGMAoligo(ethylene oxide) methacrylateOHToligohexylthiopheneOLoptical limiterOLEDorganic light-emitting diodeOPEoligo(p-phenylene-ethylene)OPVoligo(phenylenevinylidene)ORTEPOak Ridge thermal-ellipsoid plotOSCorganic solar cellsP2VP/P4VPpoly(2-vinylpyridine)/poly(4-vinylpyridine)P-388human leukemia cell linesP3HTpoly(3-hexylthiophene)PAApoly(acrylic acid)PACpolyelectrolyte-amphiphile complexpbpy6-phenyl-2,2′-bipyridinePC-3human prostate adenocarcinoma cellsPCBM[6,6]-phenyl-C61-methyl butyratePCDpoly(chloromethylstyrene-co-divinylbenzene)PCETproton-coupled electron-transferPCLpoly(ε-caprolactone)PDAphoto-diode arrayPDIperylene diimidePDMAApoly(N,N-dimethyl-acrylamide)PDMSpoly(dimethylsiloxane)PEBpoly(ethylene-co-butylene)PECphotoelectrochemicalPEGpoly(ethylene glycol)PEIpoly(ethylene imine)PEDOTpoly(3,4-ethylenedioxythiophene)PEtOxpoly(2-ethyloxazoline)PETphotoinduced electron-transferPFDSpoly(ferrocenyldimethylsilane)phen1,10-phenanthrolinephi9,10-phenanthrenequinone diiminePIpolyisoprenepiaphotoinduced absorptionPLphotoluminescencePLApoly(L-lactide)PLEDpolymer light-emitting diodePMDETAN,N,N,N“,N“-pentamethyldiethylenetriaminePMMApoly(methyl methacrylate)PNIPAMpoly(N-isopropylacrylamide)POMpolarized optical microscopy or polyoxometalatePPFSpoly(pentafluorostyrene)PPGpoly(propylene glycol)PPVpoly(p-phenylenevinylidene)PSpoly(styrene)PSCpolymer solar cellPSCApotential-step chronoamperometrypslpostsynthetic labelingPSSpoly(styrene sulfonate)PTFMSpoly(4-trifluorometylstyrene)PTHFpoly(tetrahydrofuran)PURpolyurethanePVphotovoltaicPVCpoly(vinylchloride)PVDphysical vapor depositionpydicpyridine-2,6-dicarboxylic acidQCM-Dquartz crystal microbalance with dissipation (monitoring)QCRquartz crystal resonatorQGY-TR50human hepatocellular carcinoma cell lineQQNquasi-quadratic networkQTAIMquantum theory of atoms in moleculesququinolineRAFTreversible addition-fragmentation chain-transfer polymerizationRhhydrodynamic radiusRNAribonucleic acidROESYrotating-frame Overhauser effect spectroscopyROMPring-opening metathesis polymerizationROPring-opening polymerizationRPTEChuman normal cell lineSAMself-assembled monolayerSAMLself-assembled multilayerSANSsmall angle neutron scatteringSAXSsmall angel X-ray scatteringSCspin-crossoverSCEstandard calomel electrodeSECsize exclusion chromatographySEMscanning electron microscopySF-268glioblastoma cell linesSGC-7901human gastric carcinoma cellsSHEstandard hydrogen electrodeSHGsecond-harmonic generationSIMSsecondary ion mass spectrometrySK-MEL-2human skin melanoma cellsSKOV-3human ovary adenocarcinoma cellsSmCsmectic C (phase)SMMsingle molecule magnetSPANsulfonated polyanilineSPGschizophyllanSPMscanning probe microscopySPSsurface plasmon spectroscopy or solid-phase synthesisSSBsingle-strand breakSTMscanning tunneling microscopySUNE-1human nasopharyngeal carcinoma cellsSWNTsingle-walled carbon nanotubeTtemperaturetaz3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazoleTBAPtetra(n-butyl)ammonium hexafluorophosphateTBTterpyridine-bipyridine-terpyridineTDtime-dependentTEAtriethylamineTEGtetra(ethylene glycol)TEMtransmission electron microscopyTEMPO2,2,6,6-tetramethylpiperidinyl-1-oxylTEOAtriethanolamineTEOStetraethoxysilaneTFAtrifluoroacetic acidTgglass transition temperatureTGAthermal gravimetric analysisTHFtetrahydrofuranTHzterahertz (spectroscopy)TIPNO2,2,5-trimethyl-4-phenyl-3-azahexane nitroxideTmmelting tempoeratureTMP2,2,6,6-tetramethylpiperidineTP+2,4,6-triarylpyridiumtppz2,3,5,6-tetra(pyridin-2yl)pyrazinetptztris(pyridin-2-yl)triazinetpy2,2′:6′,2″-terpyridineTRtrypanothione reductasetpy-PO(OH)22,2′:6′,2“-terpyridin-4′-yl-phosphonic acidtpy-SPGterpyridine-modified schizophyllanttpy4′-tolyl-2,2′:6′,2″-terpyridineTWIMtravelling wave ion mobility (MS)tppz2,3,5,6-tetrakis(pyridin-2-yl)pyrazineUCSTupper critical solution temperatureUPyureidopyrimidinoneVocopen circuit voltageWAXDwide angle powder X-ray diffractionWIDRhuman colon carcinoma cellsWOLEDwhite organic light-emitting diodeWRERwrite-multiple read-erase-multiple readXASX-ray absorption spectroscopyXPSX-ray photoelectron spectroscopyXRDX-ray diffractionεelipticyηoverall power conversion efficiency or cell efficiencyεrrelative permittivity valueΦPLphotoluminescence quantum yieldΦPVphotovoltaic quantum yieldτnelectron lifetimesξMmolar susceptibility2VP2-vinylpyridine4VP4-vinylpyridineChapter 1
Introduction
In 1987, J.-M. Lehn, C.J. Pedersen, and D.J. Cram were honored with the Nobel Prize in Chemistry for their work on selective host–guest chemistry [1–3]. Since then, supramolecular chemistry has evolved into one of the most active fields within today’s research community. This concept has been delineated by Lehn [4]:
“supramolecular chemistry may be defined as ‘chemistry beyond the molecule’ and is based on organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces.”
Self-recognition and self-assembly processes represent the basic operational components underpinning supramolecular chemistry in which interactions are mainly non-covalent in nature (e.g., van der Waals, hydrogen bonding, ionic or coordinative interactions). In general, these interactions are weaker and usually reversible when compared to traditional covalent bonds. Nature itself represents the ultimate benchmarks for the design of artificial supramolecular processes. Inter- and intramolecular non-covalent interactions are of major importance for most biological processes such as highly selective catalytic reactions and information storage [5]; different non-covalent interactions are present in proteins, giving them their specific structures. DNA represents one of the most famous natural examples, where self-recognition of the complementary base-pairs by hydrogen bonding leads to the self-assembly of the double helix. Starting with the development and design of crown ethers, spherands, and cryptands, modern supramolecular chemistry depicts the creation of well-defined structures via self-assembly processes [6] (similar to the well-known systems found in Nature [7]).
One of the most important interactions applied in supramolecular chemistry is metal-to-ligand coordination. In this arena, chelate complexes derived from N-heteroaromatic ligands, in particular based on 2,2′-bipyridine, 1,10-phenanthroline, and 2,2′:6′,2″-terpyridine (Figure 1.1), have become an ever-expanding synthetic and structural frontier.
Figure 1.1 General structures of 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), and 2,2′:6′,2″-terpyridine (tpy).
Bipyridine has been known since 1888 when Blau first reported the formation of a bipyridine–iron complex [8]. One year later, Blau also synthesized and analyzed bipyridine by dry distillation of copper picolinate [9]. Since this parent molecule consists of two identical parts, no directed coupling procedure is required for its construction. Therefore, unsubstituted and symmetrically substituted, in particular 4,4′-functionalized, bipyridines are readily accessible in good yields by simple coupling procedures [10, 11]. Apart from this, their transition metal (in particular RuII) complexes [12–14] feature interesting photochemical properties, making them ideal candidates for solar energy conversion, for example, in photovoltaic devices [15–23] and light-emitting electrochemical cells [24–28]. The chemistry of 2,2′:6′,2″-terpyridines (often referred to as simply terpyridine or tpy; the other structural isomers are duly noted but not considered further herein) is much younger than that of 2,2′-bipyridines. About 80 years ago, terpyridine was isolated for the first time by Morgan and Burstall by a process in which pyridine was heated (340 °C) in the presence of anhydrous FeCl3 in an autoclave (50 atm) for 36 h [29, 30]; the parent terpyridine was isolated along with a myriad of other N-containing products. It was subsequently discovered that the addition of FeII ions to a solution of diverse terpyridines gave rise to a purple color indicative of metal complex formation.
Since this pioneering work, the chemistry of terpyridine remained merely a curiosity for nearly 60 years, at which point its unique properties were incorporated into the construction of supramolecular assemblies. Terpyridines and their structural analogs have gained much interest in the last two decades as functional templates in the fields of supramolecular and coordination chemistry as well as in materials science [31–38]. This is expressed by the enormous number of scientific publications and patents dealing with the synthesis, properties, and applications of terpyridine-containing systems (March 2011: about 5950 hits in SciFinder™, Figure 1.2). The terpyridine unit contains three nitrogen atoms and can, therefore, act as a tridentate ligand [39, 40]. The rich coordination chemistry and high binding affinity towards various interesting transition as well as rare earth metal ions, in concert with the resulting redox and photophysical properties, have given rise to diverse metallo-supramolecular architectures and a multitude of potential applications. Owing to their distinct photophysical, electrochemical, catalytic, and magnetic properties, terpyridines and their complexes have been studied regarding a wide range of potential applications covering light-into-electricity conversion [16, 41–60], light-emitting electrochemical cells (LECs) [61, 62], (electro)luminescent systems (e.g., organic light-emitting diodes) [63–68], and nonlinear optical devices [69–78]. Moreover, ditopic and dendritic terpyridine ligands may form polymetallic species, which can then be utilized as luminescent or electrochemical sensors [79–134]. Besides these objectives, their biomedical and pharmaceutical utilizations (e.g., as DNA binding or antitumor active agents) are currently rapidly growing fields of research [79, 135–146].
Figure 1.2 Histogram of the number of publications containing the term “terpyridine” using SciFinder™ (the search was performed on 1st March 2011).
Furthermore, the catalytic activity of terpyridines and their transition metal complexes has been employed to enhance various (asymmetric) organic transformations [147–149]: carbon–carbon single bond formation [150], etherification [151], oxidation of alcohols or ethers [152, 153], cyclopropanation [154, 155], epoxidation [156], CuI-catalyzed alkyne-azide cycloaddition (CCAAC) [157], hydrosilylation [158], and controlled radical polymerization to name only a few [159]. Additionally, RuII bis(terpyridine) complexes have also been used for the photocatalytic splitting of water [160–162].
Well-designed supramolecular (co)polymer architectures have been realized, based on the metal-terpyridine connectivity, opening up avenues to smart “self-healing” materials with the opportunity of switching the physical and/or chemical properties of materials depending on parameters such as pH value or temperature [36, 38, 163–173]. Finally, the self-assembly of terpyridine complexes onto nanostructures (e.g., based on gold, silver, CdS, TiO2, carbon nanotubes) [174–178] as well as surfaces (e.g., glass, indium tin oxide, gold, graphite) [179–187] is considered in this context.
The diversity of applications related to terpyridines and their metal complexes calls for a high structural variability of the basic 2,2′:6′,2″-terpyridine subunit. In particular, terpyridine designs featuring π-conjugated substituents, commonly attached in 4′-position, are of increasing interest. Figure 1.3 depicts the general schematic structures of four widely used types of terpyridines. Terpyridines (1) can be considered as “workhorses” in the field of metallo-supramolecular chemistry – a multitude of terpyridine-functionalized polymers has been derived from this structural motif [36, 38, 166, 171, 188, 189]. By far, most conjugated terpyridine-containing systems used today are based on the so-called Kröhnke-motif, which features a functionalized phenyl moiety at the 4′-position of the terpyridine unit (2) [37]. Their rigid U-shaped counterparts 3 have – mainly due to synthetic limitations – been employed less frequently [190] but offer entrée to a more rigid configuration. The Ziessel-type terpyridines 4, where π-conjugation is extended via ethynyl-based systems, have been studied in particular with respect to electron-transfer processes [187, 191].
Figure 1.3 Chemical structures of 4′-functionalized (1, X = O, N or S), a Kröhnke-type (2), a rigid U-shaped (3, n = 0, 1 or 2), and a Ziessel-type terpyridine (4).
In view of the notable importance of 2,2′:6′,2″-terpyridines and their metal complexes in current research, we herein focus on architectures containing these types of ligand and their corresponding metal complexes.
The earlier book Modern Terpyridine Chemistry aimed mainly to summarize the syntheses, chemistry, and properties of functional terpyridine architectures: complexes, supramolecular polymers, 3D-structures, and surfaces [192]. Owing to the fast development of terpyridine-based materials, this book presents a detailed look beyond the basic concepts of syntheses and properties to applications with relevance to various aspects of human life. Therefore, this book consists of different topics related to “terpyridine-based materials,” each of which is discussed in an individual chapter.
Chapter 2 summarizes the known synthetic strategies leading to different terpyridines. Since terpyridines of types 1–4 currently represent the most valuable derivatives, emphasis is laid on the discussion of the various routes of their syntheses. In this context, their properties, in particular their photophysical behavior, is also evaluated.
Chapter 3 describes the preparation and properties of mononuclear terpyridine metal complexes. Emphasis will be on bis(terpyridine) complexes of RuII, OsII, IrIII, and PtII ions as well as their photophysical and electrochemical properties. Moreover, oligonuclear complexes, such as dyads and triads, are included. In particular, architectures based on RuII ions are featured in which combinations with other transition metal ions could, for example, potentially lead to “molecular switches” opening up avenues to the construction of nanodevices.
Chapter 4 features more advanced supramolecular aggregates composed of terpyridine-metal subunits: macrocycles, grids, helicates, or rotaxanes. Such materials are of interest for the understanding of supramolecular aggregation into 2D and 3D architectures. Furthermore, applications as either “molecular machines” or optoelectronic devices have been envisioned.
The combination of π-conjugated bis(terpyridine)s with transition metal ions affords high molar mass π-conjugated metallopolymers; in these materials, the properties of conventional conjugated polymers and terpyridine complexes are merged (Chapter 5). Polymer light-emitting diodes (PLEDs) or polymer solar cells (PSCs) are the most prominent targets of research in this emerging field.
Polymeric architectures containing terpyridine systems with various architectures, from side-chain-functionalized polymers to main-chain metallopolymers, are summarized in Chapter 6. The incorporation of terpyridine complexes into polymer architectures enables the synthesis of advanced multiblock copolymers (that, for instance, can form micelles or phase-separate in the bulk) or polymer-bound photoactive metal complexes for optoelectronic applications.
Chapter 7 summarizes terpyridine metal complexes that have recently found application in the fields of biochemistry and pharmacy. In particular, PtII mono (terpyridine)s are potential cytotoxic agents that could be potential replacements for the traditional PtII-based drugs (e.g., cisplatin, carboplatin). Oxidative DNA cleavage, induced by various types of terpyridine complexes, is another major field in the biomedical arena. Photoluminescent complexes can be attached to biomolecules and, therewith, be utilized as labeling agents in pharmaceutical applications.
The covalent binding of terpyridines to surfaces has led to the development of molecular wires. Fast energy-transfer processes along these wires point to potential applications in organic electronics. Besides their attachment to surfaces, the binding of terpyridine ligands (or their complexes) to organic as well as inorganic nanomaterials will, then, be considered in Chapter 8.
Chapter 9 describes applications of terpyridines and their complexes in the fields of organometallic catalysis. Terpyridine ligands (and their complexes) have been used as homogeneous or heterogeneous catalysts in various types of (asymmetric) organic reactions; important contributions will be summarized. Utilization of photoactive terpyridine complexes in energy-transfer reactions will be considered with respect to “artificial photosynthesis” and photocatalytic water splitting reactions.
Finally, Chapter 10 provides a few concluding remarks.
References
1 Lehn, J.-M. (1988) Angew. Chem., Int. Ed. Engl., 27, 89–112.
2 Pedersen, C.J. (1988) Angew. Chem., Int. Ed. Engl., 27, 1021–1027.
3 Cram, D.J. (1988) Angew. Chem., Int. Ed. Engl., 27, 1009–1020.
4 Lehn, J.-M. (1993) Science, 260, 1762–1763.
5 Darnell, J., Lodish, H., and Baltimore, B. (1990) Molecular Cell Biology, Scientific American Books, New York.
6 Lehn, J.-M. (1995) Supramolecular Chemistry – Concepts and Perspectives, VCH, Weinheim.
7 Philip, D. and Stoddart, J.F. (1996) Angew. Chem., Int. Ed. Engl., 35, 1154–1196.
8 Blau, F. (1888) Ber. Dtsch. Chem. Ges., 21, 1077–1078.
9 Blau, F. (1889) Monatsh. Chem., 10, 375–380.
10 Newkome, G.R., Patri, A.K., Holder, E., and Schubert, U.S. (2004) Eur. J. Org. Chem., 235–254.
11 Marin, V., Holder, E., Hoogenboom, R., and Schubert, U.S. (2007) Chem. Soc. Rev., 36, 618–635.
12 Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., and Balzani, V. (2007) Top. Curr. Chem., 280, 117–214.
13 Wenger, O.S. (2009) Coord. Chem. Rev., 253, 1439–1457.
14 Medlycott, E.A. and Hanan, G.S. (2006) Coord. Chem. Rev., 250, 1763–1782.
15 Kalyanasundaram, K. (1982) Coord. Chem. Rev., 46, 159–244.
16 Zakeeruddin, S.M., Nazeeruddin, M.K., Pechy, P., Rotzinger, F.P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V., and Haibach, T. (1997) Inorg. Chem., 36, 5937–5946.
17 Polo, A.S., Itokazu, M.K., and Iha, N.Y.M. (2004) Coord. Chem. Rev., 248, 1343–1361.
18 Klein, C., Nazeeruddin, M.K., Di Censo, D., Liska, P., and Grätzel, M. (2004) Inorg. Chem., 43, 4216–4226.
19 Nazeeruddin, M.K., Klein, C., Liska, P., and Grätzel, M. (2005) Coord. Chem. Rev., 249, 1460–1467.
20 Younes, A.H. and Ghaddar, T.H. (2008) Inorg. Chem., 47, 3408–3414.
21 Schwalbe, M., Schäfer, B., Görls, H., Rau, S., Tschierlei, S., Schmitt, M., Popp, J., Vaughan, G., Henry, W., and Vos, J.G. (2008) Eur. J. Inorg. Chem., 3310–3319.
22 Bessho, T., Yoneda, E., Yum, J.-H., Guglielmi, M., Tavernelli, I., Imai, H., Rothlisberger, U., Nazeeruddin, M.K., and Grätzel, M. (2009) J. Am. Chem. Soc., 131, 5930–5934.
23 Conception, J.J., Jurss, J.W., Brennaman, M.K., Hoertz, P.G., Patrocinio, A.O.T., Murakami Iha, N.Y., Templeton, J.L., and Meyer, T.J. (2009) Acc. Chem. Res., 42, 1954–1965.
24 Buda, M., Kalyuzhny, G., and Bard, A.J. (2002) J. Am. Chem. Soc., 124, 6090–6098.
25 Zysman-Coleman, E., Slinker, J.D., Parker, J.B., Malliaras, G.G., and Bernhard, S. (2008) Chem. Mater., 20, 388–396.
26 Holder, E., Langeveld, B.M.W., and Schubert, U.S. (2005) Adv. Mater., 17, 1109–1121.
27 Slinker, J.D., Bernards, D., Houston, P.L., Abruña, H.D., Bernhard, S., and Malliaras, G.G. (2003) Chem. Commun., 2392–2399.
28 Santos, G., Fonseca, F., Andrade, A.M., Patrocinio, A.O.T., Mizoguchi, S.K., Iha, N.Y.M., Peres, M., Monteiro, T., and Pereira, L. (2008) Phys. Status Solidi A: Appl. Mater. Sci., 205, 2057–2060.
29 Morgan, G.T. and Burstall, F.H. (1937) J. Chem. Soc., 1649–1655.
30 Morgan, G.T. and Burstall, F.H. (1932) J. Chem. Soc., 20–30.
31 Wild, A., Winter, A., Schlütter, F., and Schubert, U.S. (2011) Chem. Soc. Rev., 40, 1459–1511.
32 Constable, E.C. (2007) Chem. Soc. Rev., 36, 246–253.
33 Cooke, M.W. and Hanan, G.S. (2007) Chem. Soc. Rev., 36, 1466–1476.
34 Kurth, D.G. and Higuchi, M. (2006) Soft Matter, 2, 915–927.
35 Medlycott, E.A. and Hanan, G.S. (2005) Chem. Soc. Rev., 34, 133–142.
36 Andres, P.R. and Schubert, U.S. (2004) Adv. Mater., 16, 1043–1068.
37 Heller, M. and Schubert, U.S. (2003) Eur. J. Org. Chem., 947–961.
38 Shunmugam, R., Gabriel, G.J., Aamer, K.A., and Tew, G.N. (2010) Macromol. Rapid Commun., 31, 784–793.
39 McWhinnie, W.R. and Miller, J.D. (1969) Adv. Inorg. Chem. Radiochem., 12, 135–215.
40 Constable, E.C. (1986) Adv. Inorg. Chem. Radiochem., 30, 69–121.
41 O′Regan, B. and Grätzel, M. (1991) Nature, 353, 737–740.
42 Ghosh, S., Chaitanya, G.K., Bhanuprakash, K., Nazeeruddin, M.K., Grätzel, M., and Reddy, P.Y. (2006) Inorg. Chem., 45, 7600–7611.
43 Zubavichus, Y.V., Slovokhtov, Y.L., Nazeeruddin, M.K., Zakeeruddin, S.M., Grätzel, M., and Shklover, V. (2002) Chem. Mater., 14, 3556–3563.
44 Nazeeruddin, M.K. and Grätzel, M. (2001) J. Photochem. Photobiol. A., 145, 79–86.
45 Mosurkal, R., Kim, Y.-G., Kumar, J., Li, L., Walker, J., and Samuelson, L.A. (2003) Pure Appl. Chem., 40, 1317–1325.
46 Aiga, F. and Tada, T. (2005) Sol. Energy Mater. Sol. Cells, 85, 437–446.
47 Houarner, C., Blart, E., Buvat, P., and Odobel, F. (2005) Photochem. Photobiol. Sci., 4, 200–204.
48 Altobello, S., Argazzi, R., Caramori, S., Contado, C., Da Fre, S., Rubino, P., Chone, C., Larramona, G., and Bignozzi, C.A. (2005) J. Am. Chem. Soc., 127, 15342–15343.
49 Duprez, V., Biancardo, M., Spangaard, H., and Krebs, F.C. (2005) Macromolecules, 38, 10436–10448.
50 Duprez, V., Biancardo, M., and Krebs, F.C. (2005) Proc. SPIE Int. Soc. Opt. Eng., 5938, 0U/1.
51 Duprez, V., Biancardo, M., and Krebs, F.C. (2007) Sol. Energy Mater. Sol. Cells, 91, 230–237.
52 Hagemann, O., Jørgensen, M., and Krebs, F.C. (2006) J. Org. Chem., 71, 5546–5559.
53 Krebs, F.C. and Biancardo, M. (2006) Sol. Energy Mater. Sol. Cells, 90, 142–165.
54 Cheng, K.-W., Mak, C.S.-C., Chan, W.-K., Ng, A.M.-C., and Djurišic, A.B. (2008) J. Polym. Sci., Part A: Polym. Chem., 46, 1305–1317.
55 Man, K.Y.-K., Wong, H.-L., Chan, W.-K., Djurišic, A.B., Beach, E., and Rozeveld, S. (2006) Langmuir, 22, 3368–3375.
56 Anthonysamy, A., Balasubramaniam, S., Muthuraaman, B., and Maruthamuthu, P. (2007) Nanotechnology, 18 (Art. ID: 095701).
57 Manriquez, J., Hwang, S.-H., Cho, T.-J., Moorefield, C.N., Newkome, G.R., and Godinez, L.A. (2006) ECS Trans., 602, 2072.
58 Yamaguchi, T., Shibayama, N., Makade, M., Abe, Y., and Arakawa, H. (2007) Proc. SPIE Int. Soc. Opt. Eng., 6656, 09/01
59 Vellis, P.D., Mikroyannidis, J.A., Lo, C.-N., and Hsu, C.-S. (2008) J. Polym. Sci., Part A: Polym. Chem., 46, 7702–7712.
60 Rawling, T., Austin, C., Buchholz, F., Colbran, S.B., and McDonagh, A.M. (2009) Inorg. Chem., 48, 3215–3227.
61 Bolink, H.J., Capelli, L., Coronado, E., and Gavina, P. (2005) Inorg. Chem., 44, 5966–5968.
62 Holder, E., Marin, V., Tekin, E., Kozodaev, D., Meier, M.A.R., Lohmeijer, B.G.G., and Schubert, U.S. (2005) Org. Nanocomp. Opt. Mater., 846, 67–72.
63 Hepp, A., Ulrich, G., Schmechel, R., von Seggern, H., and Ziessel, R. (2004) Synth. Metals., 146, 11–15.
64 Williams, J.A.G., Wilkinson, A.J., and Whittle, V.L. (2008) Dalton Trans., 2081–2099.
65 Winter, A., Friebe, C., Chiper, M., Hager, M.D., and Schubert, U.S. (2009) J. Polym. Sci., Part A: Polym. Chem., 47, 4083–4098.
66 Chen, Y.-Y. and Lin, H.-C. (2007) J. Polym. Sci., Part A: Polym. Chem., 45, 3243–3255.
67 Chen, Y.-Y., Tao, Y.-T., and Lin, H.-C. (2006) Macromolecules, 39, 8559–8566.
68 Hwang, S.-H., Wang, P., Moorefield, C.N., Jung, J.-C., Kim, J.-Y., Lee, S.-W., and Newkome, G.R. (2006) Macromol. Rapid Commun., 27, 1809–1813.
69 Locatelli, D., Quici, S., Righetto, S., Roberto, D., Tessore, F., Ashwell, G.J., and Amiri, M. (2005) Prog. Solid State Chem., 33, 223–232.
70 De Angelis, F., Fantacci, S., Sgamelotti, A., Cariati, F., Roberto, D., Tessore, F., and Ugo, R. (2006) Dalton Trans., 852–859.
71 Tessore, F., Roberto, D., Ugo, R., Pizzotti, M., Quici, S., Cavazzini, M., Bruni, S., and De Angelis, F. (2005) Inorg. Chem., 44, 8967–8978.
72 Roberto, D., Tessore, F., Ugo, R., Bruni, S., Manfredi, A., and Quici, S. (2002) Chem. Commun., 846–847.
73 Qu, S.-L., Du, C.-M., Song, Y.-L., Wang, Y.-X., Gao, Y.-C., Liu, S.-T., Li, Y.-L., and Zhu, D.-B. (2002) Chem. Phys. Lett., 356, 403–408.
74 Uyeda, H.T., Zhao, Y., Wostyn, K., Asselberghs, I., Clays, K., Persoons, A., and Therien, M.J. (2002) J. Am. Chem. Soc., 124, 13806–13813.
75 Dumur, F., Dumas, E., and Mayer, C.R. (2008) in Targets in Heterocyclic Systems – Chemistry and Properties (eds O.A. Attanasi and D. Spinelli), Royal Society of Chemistry, pp. 70–102.
76 Dumur, F., Mayer, C.R., Hoang-Thi, K., Ledoux-Rak, I., Miomandre, F., Clavier, G., Dumas, E., Meallet-Renault, R., Frigoli, M., Zyss, J., and Sécheresse, F. (2009) Inorg. Chem., 48, 8120–8133.
77 Scarpaci, A., Monnereau, C., Hergue, N., Blart, E., Legoupy, S., Odobel, F., Gorfo, A., Perez-Moreno, J., Clays, K., and Asselberghs, I. (2009) Dalton Trans., 4538–4546.
78 Ge, Q.-C., Corkery, T.C., Humphrey, M.G., Samoc, M., and Hor, T.S.A. (2009) Dalton Trans., 6192–6200.
79 Tang, B., Yu, F.-B., Li, P., Tong, L., Duan, X., Xie, T., and Wang, X. (2009) J. Am. Chem. Soc., 131, 3016–3023.
80 Kwong, H.-L., Wong, W.-L., Lee, C.-S., Yeung, C.-T., and Teng, P.-F. (2009) Inorg. Chem. Commun., 12, 815–818.
81 Wong, W.-L., Huang, K.-H., Teng, P.-F., Lee, C.-S., and Kwong, H.-L. (2004) Chem. Commun., 384–385.
82 Banjoko, V., Xu, Y.-Q., Mintz, E., and Pang, Y. (2009) Polymer, 50, 2001–2009.
83 Miyachi, M., Yamanoi, Y., Yonezawa, T., Nishihara, H., Iwai, M., Konno, M., Iwai, M., and Inoue, Y. (2009) J. Nanosci. Nanotechnol., 9, 1722–1726.
84 Jang, C.-K. and Jaung, J.-Y. (2008) Dyes Pigments, 80, 168–173.
85 Jang, C.-K., Lee, Y.-H., Han, S.-Y., and Jaung, J.-Y. (2008) Dyes Pigments, 79, 101–104.
86 Du, J., Wang, X.-Y., Jia, M., Li, T.-J., Mao, J.-F., and Guo, Z.-J. (2008) Inorg. Chem. Commun., 11, 999–1002.
87 Shunmugam, R., Gabriel, G.J., Smith, C.E., Aamer, K.A., and Tew, G.N. (2008) Chem. Eur. J., 14, 3904–3907.
88 Shunmugam, R. and Tew, G.N. (2008) Chem. Eur. J., 14, 5409–5412.
89 Tew, G.N., Aamer, K.A., and Shunmugam, R. (2006) in Metal-Containing and Metallosupramolecular Polymers and Materials (eds U.S. Schubert, G.R. Newkome, and I. Manners), American Chemical Society, pp. 126–140.
90 Tew, G.N., Aamer, K.A., and Shunmugam, R. (2005) Polymer, 46, 8440–8447.
91 Galvao de Lima, R., Sauaia, M.G., Ferezin, C., Pepe, I.M., Jose, N.M., Bendhack, L.M., Novais da Roca, Z., and Santana da Silva, R. (2007) Polyhedron, 26, 4620–4624.
92 Wong, K.M.-C. and Yam, V.W.-W. (2007) Coord. Chem. Rev., 251, 2477–2488.
93 Lo, H.-S., Yip, S.-K., Wong, K.M.-C., Zhu, N., and Yam, V.W.-W. (2006) Organometallics, 25, 3537–3540.
94 Tang, W.-S., Lu, X.-X., Wong, K.M.-C., and Yam, V.W.-W. (2005) J. Mater. Chem., 15, 2714–2720.
95 Wong, K.M.-C., Tang, W.-S., Lu, X.-X., Zhu, N., and Yam, V.W.-W. (2005) Inorg. Chem., 44, 1492–1498.
96 Liang, Z.-Q., Wang, C.-X., Yang, J.-X., Gao, H.-W., Tian, Y.-P., Tao, X.-T., and Jiang, M.-H. (2007) New J. Chem., 31, 906–910.
97 Chiper, M., Meier, M.A.R., Kranenburg, J.M., and Schubert, U.S. (2007) Macromol. Chem. Phys., 208, 679–689.
98 Meier, M.A.R. and Schubert, U.S. (2005) Chem. Commun., 4610–4612.
99 Luo, H.-Y., Jiang, J.-H., Zhang, X.-B., Li, C.-Y., Shen, G.-L., and Yu, R.-Q. (2007) Talanta, 72, 575–581.
100 Chen, S.-M. and Wang, C.-H. (2007) Bioelectrochem. Bioenerg., 70, 452–461.
101 Li, X.-H., Liu, Z.-Q., Li, F.-Y., Duan, X.-F., and Huang, C.-H. (2007) Chin. J. Chem., 25, 186–189.
102 Constable, E.C., Housecroft, C.E., Cargill Thompson, A.M.W., Passaniti, P., Silvi, S., Maestri, M., and Credi, A. (2007) Inorg. Chim. Acta, 360, 1102–1110.
103 Peng, X.-J., Xu, Y.-Q., Sun, S.-G., Wu, Y.-K., and Fan, J.-L. (2007) Org. Biomol. Chem., 5, 226–228.
104 Li, Y.-Q., Bricks, J.L., Resch-Genger, U., Spieles, M., and Rettig, W. (2006) J. Phys. Chem. A., 110, 10972–10984.
105 Resch-Genger, U., Li, Y.-Q., Bricks, J.L., Kharlanov, V., and Rettig, W. (2006) J. Phys. Chem. A., 110, 10956–10971.
106 Ros-Lis, J.V., Martínez-Máñez, R., Soto, J., McDonagh, C., and Guckian, A. (2006) Eur. J. Inorg. Chem., 2647–2655.
107 Schmittel, M., Kalsani, V., Mal, P., and Bats, J.W. (2006) Inorg. Chem., 45, 6370–6377.
108 Bonnet, S., Collin, J.-P., Koizumi, M., Mobian, P., and Sauvage, J.-P. (2006) Adv. Mater., 18, 1239–1250.
109 Jimenez-Molero, M.C., Dietrich-Buchecker, C., and Sauvage, J.-P. (2002) Chem. Eur. J., 8, 1456–1466.
110 Barigelletti, F., Flamigni, L., Calogero, G., Hammarström, L., Sauvage, J.-P., and Collin, J.-P. (1998) Chem. Commun., 2333–2334.
111 Coronado, E., Galan-Mascaros, J.R., Marti-Gastaldo, C., Palomares, E., Durrant, J.R., Vilar, R., Grätzel, M., and Nazeeruddin, M.K. (2005) J. Am. Chem. Soc., 127, 12351–12356.
112 Shamsipur, M., Ershad, S., Samadi, N., Rezvani, and A.A., Haddadzadeh, H. (2005) Talanta, 65, 991–997.
113 Wadas, T.J., Wang, Q.-M., Kim, Y.-J., Flaschenreim, C., Blanton, T.N., and Eisenberg, R. (2004) J. Am. Chem. Soc., 126, 16841–16849.
114 Tong, Q.-X., Li, X.-H., Wu, L.-Z., Yang, Q.-Z., Zhang, L.-P., and Tung, C.-H. (2004) Chin. J. Chem., 22, 1204–1207.
115 Yang, Q.-Z., Wu, L.-Z., Wu, Z.-X., Zhang, L.-P., and Tung, C.-H. (2004) Chin. J. Chem., 22, 1–3.
116 Ulrich, G. and Ziessel, R. (2004) J. Org. Chem., 69, 2070–2083.
117 Goze, C., Ulrich, G., Charbonniere, L., Cesario, M., Prange, T., and Ziessel, R. (2003) Chem. Eur. J., 9, 3748–3755.
118 Ziessel, R. (1999) J. Inclusion Phenom. Macrocycl. Chem., 23, 369–379.
119 Baxter, P.N.W. (2003) Chem. Eur. J., 9, 5011–5022.
120 del Pilar Taboada Sotomayor, M., Tescardello Dias, I.L., de Oliviera Neto, N., and Kubota, L.T. (2003) Anal. Chim. Acta, 494, 199–205.
121 Loiseau, F., Passalacqua, R., Campagna, S., Polson, M.I.J., Fang, Y.-Q., and Hanan, G.S. (2002) Photochem. Photobiol. Sci., 1, 982–990.
122 Salimi, A., Pourbeyram, S., and Amini, M.K. (2002) Analyst, 127, 1649–1656.
123 Zhang, Y., Murphy, C.B., and Jones, W.E. Jr (2002) Macromolecules, 35, 630–636.
124 Jiang, B.-W., Zhang, Y., Sahay, S., Chatterjee, S., and Jones, W.E. Jr (1999) Proc. SPIE Int. Soc. Opt. Eng., 3856, 212.
125 Aiet-Haddou, H., Wiskur, S.L., Lynch, V.M., and Anslyn, E.V. (2001) J. Am. Chem. Soc., 123, 11296–11297.
126 Kimura, M., Hamakawa, T., Hanabusa, K., Shirai, H., and Kobayashi, N. (2001) Inorg. Chem., 40, 4775–4779.
127 Diáz, D.J., Bernhard, S., Storrier, G.D., and Abruña, H.D. (2001) J. Phys. Chem. B, 105, 8746–8754.
128 Padilla-Tosta, M.E., Lloris, J.M., Martínez-Máñez, R., Pardo, T., Sancenon, F., Soto, J., and Marcos, M.D. (2001) Eur. J. Inorg. Chem., 1221–1226.
129 Padilla-Tosta, M.E., Lloris, J.M., Martínez-Máñez, R., Marcos, M.D., Miranda, M.A., Pardo, T., Sancenon, F., and Soto, J. (2001) Eur. J. Inorg. Chem., 1475–1482.
130 Padilla-Tosta, M.E., Lloris, J.M., Martínez-Máñez, R., Benito, A., Soto, J., Pardo, T., Miranda, M.A., and Marcos, M.D. (2000) Eur. J. Inorg. Chem., 741–748.
131 Padilla-Tosta, M.E., Lloris, J.M., Martínez-Máñez, R., Pardo, T., Miranda, M.A., and Marcos, M.D. (2000) Inorg. Chem. Commun., 3, 45–48.
132 Fabre, B., Lehmann, U., and Schlüter, A.D. (2001) Electrochim. Acta, 46, 2855–2861.
133 Goodall, W. and Williams, J.A.G. (2000) J. Chem. Soc., Dalton Trans., 2893–2895.
134 Murtaza, Z. and Lakowicz, J.R. (1999) Proc. SPIE Int. Soc. Opt. Eng., 3602, 309.
135 Peterson, J.R., Smith, T.A., and Thordarson, P. (2007) Chem. Commun., 1899–1901.
136 Peterson, J.R., Smith, T.A., and Thordarson, P. (2010) Org. Biomol. Chem., 8, 151–162.
137 Piao, X.-J., Zou, Y., Wu, J.-C., Li, C.-Y., and Yi, T. (2009) Org. Lett., 11, 3818–3821.
138 Bertrand, H., Sombard, S., Monchaud, D., Talbot, E., Guedin, A., Mergny, J.-L., Grunert, R., Bednarski, P.J., and Teulade-Fichou, M.-P. (2009) Org. Biomol. Chem., 7, 2864–2871.
139 Eryazici, I., Moorefield, C.N., and Newkome, G.R. (2008) Chem. Rev., 108, 1834–1895.
140 Jung, Y.-W. and Lippard, S.J. (2007) Chem. Rev., 107, 1387–1407.
141 Kelland, J. (2007) Nat. Rev. Cancer, 7, 573–584.
142 Lo, Y.-C., Ko, T.-P., Su, W.-C., Su, T.-L., and Wang, A.H.-J. (2009) J. Inorg. Biochem., 103, 1082–1092.
143 Wu, P., Wong, E.L.-M., Ma, D.-K., Tong, G.S.-M., Ng, K.-M., and Che, C.-M. (2009) Chem. Eur. J., 15, 3652–3656.
144 Gao, Y.-H., Wu, J.-Y., Li, Y.-M., Sun, P.-P., Zhou, H.-P., Yang, J.-X., Zhang, S.-Y., Jin, B.-K., and Tian, Y.-P. (2009) J. Am. Chem. Soc., 131, 5208–5213.
145 Anthonysamy, A., Balasubramaniam, S., Shanmugaiah, V., and Mathivanan, N. (2008) Dalton Trans., 2136–2143.
146 Lo, K.K.-W., Chung, C.-K., Ng, D.C.-M., and Zhu, N. (2002) New J. Chem., 26, 81–88.
147 Dannacher, J. (2006) J. Mol. Catal. A: Chem., 251, 159–176.
148 Kwong, H.-L., Yeung, H.-L., Yeung, C.-T., Lee, W.-S., Lee, C.-S., and Wong, W.-T. (2007) Coord. Chem. Rev., 251, 2188–2222.
149 Mägerlein, W., Dreisbach, C., Hugl, H., Tse, M.-K., Klawonn, M., Bhor, S., and Beller, M. (2007) Catal. Today, 121, 140–150.
150 Liu, P., Zhou, C.-Y., Xiang, S., and Che, C.-M. (2010) Chem. Commun., 46, 2739–2741.
151 Gnanamgari, D., Leung, C.-H., Schley, N.D., Hilton, S.T., and Crabtree, R.H. (2008) Org. Biomol. Chem., 6, 4442–4445.
152 Chen, X., Liu, Q., Sun, H.-B., Yu, X.-Q., and Pu, L. (2010) Tetrahedron Lett., 51, 2345–2347.
153 Kamijo, S., Amaoka, Y., and Inoue, M. (2010) Chem. Asian J., 5, 486–489.
154 Yeung, C.-T., Lee, W.-S., Tsang, C.-S., Yiu, S.-M., Wong, W.-T., Wong, W.-Y., and Kwong, H.-L. (2010) Polyhedron, 29, 1497–1507.
155 Yeung, C.-T., Teng, P.-F., Yeung, H.-L., Wong, W.-T., and Kwong, H.-L. (2007) Org. Biomol. Chem., 5, 3859–3864.
156 Liu, P., Wong, E.L.-M., Yuen, A.W.-H., and Che, C.-M. (2008) Org. Lett., 10, 3275–3278.
157 Suzuka, T., Ooshiro, K., and Kina, K. (2010) Heterocycles, 81, 601–610.
158 Seckin, T., Özdemir, I., Köytepe, S., and Gürbüz, N. (2009) J. Inorg. Organomet. Polym. Mater., 19, 143–151.
159 Tang, H., Rodosz, M., and Shen, Y. (2009) AiChE J., 55, 737–746.
160 Chen, Z.-F., Concepcion, J.J., Jurss, J.W., and Meyer, T.J. (2009) J. Am. Chem. Soc., 113, 15580–15581.
161 Concepcion, J.J., Jurss, J.W., Norris, M.R., Chen, Z.-F., Templeton, J.L., and Meyer, T.J. (2010) Inorg. Chem., 49, 1277–1279.
162 Wasylenko, D.J., Ganesamoorthy, C., Koivisto, B.D., Henderson, M.A., and Berlinguette, C.P. (2010) Inorg. Chem., 49, 2202–2209.
163 Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S., and Schubert, U.S. (2011) Adv. Mater., 5424–5430.
164 Hofmeier, H. and Schubert, U.S. (2004) Chem. Soc. Rev., 33, 373–399.
165 Mansfeld, U., Hager, M.D., Hoogenboom, R., Ott, C., Winter, A., and Schubert, U.S. (2009) Chem. Commun., 3386–3388.
166 Lohmeijer, B.G.G., and Schubert, U.S. (2005) J. Polym. Sci., Part A: Polym. Chem., 43, 6331–6344.
167 Gohy, J.-F., Ott, C., Hoeppener, S., and Schubert, U.S. (2009) Chem. Commun., 6038–6040.
168 Chiper, M., Fournier, D., Hoogenboom, R., and Schubert, U.S. (2008) Macromol. Rapid Commun., 29, 1640–1647.
169 Landsmann, S., Winter, A., Chiper, M., Fustin, C.-A., Hoeppener, S., and Schubert, U.S. (2008) Macromol. Chem. Phys., 209, 1666–1672.
170 Mugemana, C., Guillet, P., Hoeppener, S., Schubert, U.S., Fustin, C.-A., and Gohy, J.-F. (2010) Chem. Commun., 46, 1296–1298.
171 Fustin, C.-A., Guillet, P., Schubert, U.S., and Gohy, J.-F. (2007) Adv. Mater., 19, 1665–1673.
172 Hofmeier, H. and Schubert, U.S. (2003) Macromol. Chem. Phys., 204, 1391–1397.
173 Ott, C., Hoogenboom, R., and Schubert, U.S. (2008) Chem. Commun., 3516–3518.
174 Chan, Y.-T., Li, S., Moorefield, C.N., Wang, P., Shreiner, C.D., and Newkome, G.R. (2010) Chem. Eur. J., 16, 4164–4168.
175 Duffort, V., Thouvenot, R., Afonso, C., Izzet, G., and Proust, A. (2009) Chem. Commun., 6062–6064.
176 Kubo, W., Nagao, M., Otsuka, Y., Homma, T., and Miyata, H. (2009) Langmuir, 25, 13340–13343.
177 Pan, Y.-X., Tong, B., Shi, J.-B., Zhao, W., Shen, J.-B., Zhi, J., and Dong, Y.-P. (2010) J. Phys. Chem. C, 114, 8040–8047.
178 Gao, Y.-H., Wu, J.-Y., Zhao, Q., Zheng, L.-X., Zhou, H.-P., Zhang, S.-Y., Yang, J.-X., and Tian, Y.-P. (2009) New J. Chem., 33, 607–611.
179 Smith, H.L., Usala, R.L., McQueen, E.W., and Goldsmith, J.I. (2010) Langmuir, 26, 3342–3349.
180 Alvaro, M., Aprile, C., Ferrer, B., Sastre, F., and Garcia, H. (2009) Dalton Trans., 7437–7444.
181 Haensch, C., Chiper, M., Ulbricht, C., Winter, A., Hoeppener, S., and Schubert, U.S. (2008) Langmuir, 24, 12981–12985.
182 Tuccitto, N., Delfanti, I., Torrisi, V., Scandola, F., Chioboli, C., Stepanenko, V., Würthner, F., and Licciardello, A. (2009) Phys. Chem. Chem. Phys., 11, 4033–4038.
183 Tuccitto, N., Ferri, V., Cazazzini, M., Quici, S., Zhavnerko, G., Liciardello, A., and Rampi, M.A. (2009) Nat. Mater., 8, 41–46.
184 Tuccitto, N., Torissi, V., Cavazzini, M., Morotti, T., Puntoriero, F., Quici, S., Campagna, S., and Liciardello, A. (2007) ChemPhysChem, 8, 227–230.
185 Utsuno, M., Toshimitsu, F., Kume, S., and Nishihara, H. (2008) Macromol. Symp., 270, 153–160.
186 Auditore, A., Tuccitto, N., Marzanni, G., Quici, S., Puntoriero, F., Campagna, S., and Liciardello, A. (2003) Chem. Commun., 2494–2495.
187 Kurita, T., Nishimori, Y., Toshimitsu, F., Muratsugu, S., Kume, S., and Nishihara, H. (2010) J. Am. Chem. Soc., 132, 4524–4525.
188 Whittle, G.R., Hager, M.D., Schubert, U.S., and Manners, I., Nat. Mater., 10, 176–188.
189 Chiper, M., Hoogenboom, R., and Schubert, U.S. (2009) Macromol. Rapid Commun., 30, 565–578.
190 Sielemann, D., Winter, A., Flörke, U., and Risch, N. (2004) Org. Biomol. Chem., 2, 863–868.
191 Benniston, A.C., Harriman, A., and Li, P.-Y. (2010) J. Am. Chem. Soc., 132, 26–27.
192 Schubert, U.S., Hofmeier, H., and Newkome, G.R. (2006) Modern Terpyridine Chemistry, Wiley-VCH Verlag GmbH, Weinheim.
