475,99 €
Biotechnology represents a major area of research focus, and many universities are developing academic programs in the field. This guide to biomanufacturing contains carefully selected articles from Wiley's Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology as well as new articles (80 in all,) and features the same breadth and quality of coverage and clarity of presentation found in the original. For instructors, advanced students, and those involved in regulatory compliance, this two-volume desk reference offers an accessible and comprehensive resource.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 5556
Veröffentlichungsjahr: 2013
Table of Contents
Title Page
Copyright
Preface
Contributors
Volume I: Expression Systems & Process Development
Part I: Introduction
Introduction
Part II: Industrial Cell Growth and Gene Expression Systems
Chapter 1: Animal Cells, Suspension Culture
1.1 Introduction
1.2 Types Used for Large-Scale Production in Suspension Culture
1.3 Suspension Culture Reactors
1.4 Operating Modes for Reactors
1.5 Process Monitoring and Control
1.6 Culture Media for Suspension Culture
1.7 Conclusions
References
Further Reading
Chapter 2: Baculovirus Expression Systems
2.1 Introduction
2.2 Baculovirus Structure and Replication
2.3 Production of Recombinant Baculoviruses
2.4 Baculovirus Transfer Vectors
2.5 Modifying the Baculovirus Genome to Improve Protein Production
2.6 Insect Cell Culture
2.7 Baculoviruses for Gene Expression in Mammalian Cells
2.8 Conclusion
References
Chapter 3: Baculovirus Kinetics, Insect Culture
3.1 History and Challenge
3.2 Baculovirus
3.3 Cell Yield Concept
3.4 Kinetic Model of Viral Infection: Synchronous Infection
3.5 Kinetic Model of Viral Infection: Asynchronous Infection
References
Chapter 4: Cell Culture, Aseptic Techniques
4.1 Introduction
4.2 Aseptic Technique: General Considerations
4.3 Aseptic Technique: Basic Procedures
4.4 HEPA Filtration
4.5 Hoods and Cabinets Employing HEPA Filtration
4.6 Working Within Unidirectional Airflow Cabinets and Microbiological Safety Cabinets
4.7 Testing of Class I and Class II Microbiological Safety Cabinets
4.8 Cleanrooms for Cell Culture Use
References
Chapter 5: Cell Cycle in Bioprocesses
5.1 Introduction
5.2 The Cell Cycle
5.3 Methods for Describing the Cell Cycle
5.4 Importance of the Cell Cycle in Process Biotechnology
References
Chapter 6: Cell Growth and Protein Expression Kinetics
6.1 Introduction
6.2 Batch Culture Kinetics
6.3 Continuous Culture Kinetics
6.4 Fed-Batch and Perfusion Cultures
6.5 Conclusions
Nomenclature
References
Chapter 7: Cell Viability Measurement
7.1 Introduction
7.2 Permeability Assays
7.3 Functional Assays
7.4 Flow Cytometry
7.5 Physical Methods
References
Chapter 8: Contamination Detection in Animal Cell Culture
8.1 Introduction
8.2 Historical Perspectives
8.3 Regulatory Issues
8.4 Manufacturing and Safety Testing Standards
8.5 Examples of Viral Contaminants
8.6 Detection of Viral Contaminants in Cell Lines
8.7 Testing Raw Materials
8.8 Detection of Mycoplasmas
8.9 Bacteria and Fungi
8.10 Oxygen Uptake Rate
8.11 Endotoxin Detection
8.12 Statistical Analysis
8.13 Detection of Prions
8.14 Summary
References
Chapter 9: Culture Collections and Biological Resource Centers (BRCs)
9.1 Introduction
9.2 Culture Collection Funding
9.3 Operation
9.4 Quality Management
9.5 Services
9.6 Summary
References
Further Reading
Chapter 10: Culture Preservation
10.1 Introduction
10.2 Culture and Preservation of Bacteria
10.3 Culture and Preservation of Fungi and Yeast
10.4 Culture and Preservation of Cell Cultures
References
Chapter 11: Expression and Secretion of Heterologous Proteins, Bacillus and Other Gram-Positive Bacteria
11.1 Introduction
11.2 Major Industrial Strains
11.3 Bacillus Megaterium
11.4 Protocols for Bacillus Megaterium
References
Chapter 12: Gene Expression in Human Cells
12.1 Background
12.2 The Safety and Regulatory Aspects of Using Human Cell Lines for Gene Expression
12.3 Gene Expression in Human Cell Lines
12.4 Scale-Up of Recombinant Human Cell Lines Cultivation
12.5 Concluding Remarks
References
Chapter 13: Gene expression in Pichia and other methylotroph yeast
13.1 Introduction
13.2 Background
13.3 Strategies for Optimization of Protein Expression
13.4 Fermentation Process
13.5 Conclusions and Future Perspectives
13.6 Media Compositions
13.7 Glossary of P. Pastoris Strains
References
Further Reading
Chapter 14: Gene Expression in Recombinant Animal Cells and Transgenic Animals
14.1 Introduction
14.2 Overview
14.3 Plasmid Expression Vectors for Animal Cells
14.4 Other Direct Transfer Vectors
14.5 Direct DNA Transfer
14.6 Transfection Methods
14.7 Viral Expression Vectors
14.8 Expression Parameters And Optimization—Vector And Insert Sequences
14.9 Expression Parameteroptimization—Consequences of Transgene Integration
14.10 Recombination-Based Methodology and Gene Inhibition Strategy
14.11 The Production of Transgenic Mammals from Manipulated Cells
14.12 Uses for Transgenic Animals
14.13 Nuclear Transfer Technology
References
Chapter 15: Inoculum Expansion Methods, Animal Cell Lines
15.1 Introduction
15.2 Inoculum Expansion Processes
15.3 Impact of Cell Banks on Inoculum Expansion
15.4 Current Trends in Inoculum Expansion
15.5 Technology Transfer
15.6 Conclusion
15.7 Product Websites
References
Further Reading
Chapter 16: Insect Cell Culture
16.1 Introduction
16.2 Insect Cell Lines
16.3 Viruses
16.4 Baculovirus Gene Expression
16.5 Construction of Recombinant Baculoviruses
16.6 Posttranslational Processing
16.7 Applications
16.8 Large-Scale Processing: Cell Culture or Larval Production
16.9 Conclusion
References
Chapter 17: Kinetics of Microbial Growth
17.1 Introduction
17.2 Growth Stoichiometry
17.3 Kinetics of Chemical and Enzyme Reactions
17.4 Simple Models of Microbial and Cell Growth
17.5 Structured Models
17.6 Population Dynamics (Mutations, Autoselection, Plasmid Transfer)
17.7 Microbial Growth in Various Cultivation Systems
References
Chapter 18: Microalgae, Mass Culture Methods
18.1 Introduction
18.2 Bioreactors for Microalgae Mass Cultures
18.3 MAJOR FACTORS GOVERNING THE PRODUCTION OF MICROALGAE
18.4 Tubular Photobioreactors Design
18.5 Photosynthetic Efficiency in Microalgal Mass Cultures
18.6 Operational Considerations
18.7 Concluding Remarks
Nomenclature
References
Chapter 19: Microbial Growth Measurement
19.1 Introduction
19.2 Direct Particle Counts
19.3 Colony Counts Equal Viable Counts
19.4 Direct Biomass Measurements
19.5 Biomass By Light Scattering
19.6 Sampling
References
Chapter 20: Microbial Media Composition
20.1 Introduction
20.2 Essential Nutritional Requirements
20.3 Physical Parameters
20.4 Media Design and Composition
20.5 Media Sterilization
20.6 Media Storage
References
Chapter 21: Microscopic Characterization of Cells
21.1 Introduction and Perspective
21.2 Developments and Milestones in Microscopy
21.3 Light Microscopy
21.4 Laser Tweezers and Scissors
21.5 Scanning-Probe Near-Field Microscopes
21.6 Video Microscopy and Image Processing
21.7 Electron Microscopes
21.8 Summary
21.9 Web Sites
References
Chapter 22: Mycoplasma Contamination Of Cell Cultures
22.1 Biology and Nomenclature of Mycoplasmas
22.2 Mycoplasma Contamination of Cell Cultures
22.3 Detection of Mycoplasma Contamination
22.4 Elimination of Mycoplasma Contamination
22.5 Working Protocols for Detection, Elimination, and Prevention of Mycoplasma Contamination
References
Chapter 23: Protein Glycosylation: Analysis, Characterization, and Engineering
23.1 Introduction
23.2 Overview of Protein Glycosylation
23.3 Effects of Glycosylation on Proteins
23.4 Techniques for Analyzing Glycoproteins, Glycopeptides, and their Attached Glycans
23.5 Glycosylation of Recombinant Protein Therapeutics
23.6 Conclusions
References
Chapter 24: Secretion of Heterologous Proteins, Gram Positive Bacteria
24.1 Protein Secretion Via the General Export Pathway in Gram-Positive Bacteria
24.2 Secretion of Heterologous Proteins in L. Lactis
24.3 Expression Systems
24.4 Protein Secretion in L. Lactis
24.5 Conclusion
References
Chapter 25: Soluble Protein Expression in Bacteria
25.1 Introduction
25.2 Altering Growth Conditions to Increase Soluble Expression
25.3 Altering the Host Strain and Vector to Direct Soluble Expression
25.4 Altering the Protein Sequence for Solubility
25.5 Growth Conditions and Variables That Affect Yields of Soluble Protein
25.6 Conclusions and Outlook
References
Further Reading
Part III: Media, cell lines and process development
Chapter 26: Animal Cell Culture Media
26.1 Introduction
26.2 Nutrients in Cell Culture Media
26.3 Basal Medium Development
26.4 Feed Medium Development
26.5 Product Quality
26.6 Use of Appropriate Small-Scale Model and High Throughput Systems
26.7 Industrial Considerations for The Optimization and Implementation of Basal and Feed Media
26.8 Concluding Remarks
References
Chapter 27: Animal Cell Culture, effects of Osmolality and Temperature
27.1 Effect of Osmolality of the Cellular Microenvironment
27.2 Effects of Temperature Perturbations on Cellular Physiology and Performance in Bioprocess Systems
27.3 Conclusions
References
Chapter 28: Animal Cell Stability
28.1 Factors That Affect Genetic Stability of Endogenous Genes
28.2 Genotypic and Phenotypic Stability of Recombinant Cell Lines
28.3 Consequences of Genetic Instability on Recombinant Protein Quality
28.4 Genotypic Characterization and Validation of Genetic Stability
References
Chapter 29: Animal Cell Types, Hybridomas
29.1 Introduction
29.2 Antibody Production by Animal Cells In Vitro
29.3 New Methods for Human Antibody Production (In Vitro Immunization, Artificial Lymph Node Systems)
29.4 Alternatives to Antibodies for Use in Human Beings
29.5 Outlook
References
Further Reading
Chapter 30: Antibody Production, Human Recombinant
30.1 Introduction
30.2 Why Recombinant Antibody Selection and Production?
30.3 Making Hybridoma-Derived Antibodies More Human
30.4 Obtaining Human Recombinant Antibodies
30.5 Production of Recombinant Antibodies
30.6 Recombinant Antibody Variants
30.7 Applications of Recombinant Antibodies
30.8 Outlook
Further Reading
Reviews
Remark: this chapter is based on and/or contains materials derived from of other chapters written by the same author in detail:
Chapter 31: Antifoams and Pluronic Polyols, Cell Protection
31.1 Introduction
31.2 Properties of Pluronic Polyols
31.3 Protective Effects of Pluronic Polyols
31.4 Application
References
Chapter 32: Biominiaturization of Bioreactors
32.1 Introduction
32.2 Bioreactor Monitoring Tools
32.3 Static Bioreactor Systems
32.4 Microfabricated Reactors
32.5 Shaken Bioreactor Systems
32.6 Stirred Bioreactor Systems
32.7 Bioreactors
32.8 Other Methods Of Convective Mixing
32.9 Conclusion
References
Chapter 33: Inoculum Preparation
33.1 Introduction
33.2 Culture Storage
33.3 Stock Culture
33.4 Culture Assessment
33.5 Inoculum Development
33.6 Inoculation/Seed Transfer Criteria
33.7 Inoculum Preparation Studies
33.8 Inoculum Development Summary
References
Chapter 34: Microcarrier Culture
34.1 History and Development
34.2 Cell Cultivation
34.3 Microcarriers in Vaccine Production
34.4 Microcarriers in Recombinant Protein Production
34.5 Future Directions in Microcarrier Culture
34.6 Conclusions
References
Chapter 35: Monoclonal Antibody Production, Cell Lines
35.1 Introduction
35.2 Role of The Cell Line
35.3 Properties Of Most-Commonly Used Mammalian Cell Lines and Vector Systems
35.4 Other Host Platforms
35.5 Closing Comments
References
Chapter 36: Plant Cell Culture, Laboratory Techniques
36.1 Introduction
36.2 Laboratory Facilities
36.3 Plant Cell Culture Media
36.4 Cell Culture Systems
36.5 Summary
References
Further Reading
Chapter 37: Scale-Up of Biotechnological Processes
37.1 Introduction
37.2 Dimensional Analysis
37.3 The Pi Theorem
37.4 Determination of a Pi Set by Matrix Calculation
37.5 Fundamentals of the Theory of Models and of Scale-Up
37.6 Further Procedures to Establish A Relevance List
37.7 Short Summary of the Essentials of the Dimensional Analysis and Scale-Up
37.8 Treatment of Variable Physical Properties by Dimensional Analysis
37.9 Dimensional Analytical Treatment of Heat Transfer Processes
37.10 DIMENSIONAL ANALYTICAL TREATMENT OF MASS TRANSFER PROCESSES
References
Volume II: Equipment, Process Design, Sensing, Control, and cGMP Operations
Part IV: Bioreactor design, engineering, process sensing and control
Chapter 38: Aeration, Mixing, and Hydrodynamics in Animal Cell Bioreactors
38.1 Introduction
38.2 Aeration
38.3 Mixing
38.4 THE RELATIONSHIP OF ANIMAL CELLS TO HYDRODYNAMIC FORCES
38.5 Summary
References
Chapter 39: Biocatalytic Membrane Reactors
39.1 Introduction
39.2 Fundamentals
39.3 Membrane Reactor Configurations
39.4 Applications
39.5 Other membrane bioreactor applications
39.6 Conclusions
References
Chapter 40: Bioreactor Scale-Down
40.1 The Scale-Down Approach
40.2 Regime Analysis
40.3 Simulation
40.4 Optimization and Modeling
40.5 Application
40.6 Scale-Down Studies in Microbial Fermentations
40.7 Experimental Configurations for Scale-Down Studies
40.8 Simulation of Substrate or pH Gradients
40.9 Simulation of Simultaneous Environmental Gradients
Nomenclature
References
Chapter 41: Bioreactor Scale-Up*
41.1 Introduction
41.2 Aspect Ratio, Homogeneity, and Gradients
41.3 Heating and Cooling
Nomenclature
References
Chapter 42: Bioreactors: Airlift Reactors
42.1 Introduction
42.2 Fluid Dynamics
42.3 Mass Transfer
42.4 Heat Transfer
42.5 Multiphase Airlift Bioreactors
42.6 Selection and Design
42.7 Models
42.8 Bioprocesses
42.9 Summary
List of Abbreviations
Nomenclature
References
Chapter 43: Bioreactors, Continuous Culture of Plant Cells
43.1 Introduction
43.2 Assumptions in Continuous Culture Theory and their Pitfalls
43.3 The Practical Setup of a Continuous Culture
43.4 Mathematical Description of Continuous Culture
43.5 Applications of the Continuous Cultivation of Plant Cells
Nomenclature
References
Chapter 44: Bioreactors, Fluidized-Bed
44.1 History and Introduction
44.2 Plant Conception and Operation
44.3 Scale-Up Considerations
44.4 Modeling and Simulation
44.5 Praxis Examples
Nomenclature
References
Chapter 45: Bioreactors, Gas-Treatment
45.1 Introduction
45.2 Microorganisms and Applications
45.3 Bioreactor Types
45.4 Bioreactor Design
Nomenclature
References
Chapter 46: Bioreactors, Perfusion
46.1 Introduction
46.2 Cell Retention Based on Filtration
46.3 Cell Retention Based on Sedimentation
46.4 Conclusion
References
Chapter 47: Bioreactors: Rotating Biological Contactors
47.1 Introduction
47.2 Background
47.3 Conclusions and Prospects
References
Chapter 48: Bioreactors, Stirred Tank for Culture of Plant Cells
48.1 Products From Suspended Plant Cell Cultures
48.2 Properties of Suspended Plant Cell Cultures: Implications for Bioreactor Engineering
48.3 Suitability of Stirred Bioreactors for Suspended Plant Cell Culture
48.4 Stirred Tank Equipment and Operating Characteristics
48.5 Plant Cell Culture in Stirred Bioreactors: Experimental Findings
48.6 Plant Cell Culture in Stirred Bioreactors: Theoretical Analysis
48.7 Conclusions
Nomenclature
References
Chapter 49: Cell Immobilization, Engineering Aspects
49.1 Introduction
49.2 Internal Mass Transport
49.3 External Mass Transport
49.4 Reaction and Diffusion
References
Chapter 50: Fermenter/Bioreactor Design
50.1 Introduction
50.2 Safety and Regulatory Compliance
50.3 Design Basis and Other General Considerations
50.4 Process Requirements: Basics
50.5 Mechanical Design
50.6 Conclusion
References
Chapter 51: Gas-Holdup in Bioreactors
51.1 Basic Definitions
51.2 Biotechnological Relevance
51.3 What determines gas holdup?
51.4 Physico-chemical effects
51.5 Measurement Techniques
References
Chapter 52: Immobilization of Proteins and Enzymes, Mesoporous Supports
52.1 Introduction
52.2 Immobilization of Proteins on Mesoporous Silicas and Carbons
52.3 Conclusions and Outlook
References
Chapter 53: Immobilized Cells
53.1 Introduction
53.2 Cell Immobilization: Carriers and Techniques
53.3 Microencapsulation of Cells
53.4 Requirements for Cell Immobilization
53.5 Biomaterials for Cell Immobilization
53.6 Techniques for Cell Immobilization
53.7 Effects of Immobilization on Cells
53.8 Reactor Design
53.9 Conclusions
References
Further Reading
Chapter 54: Immobilized Enzymes
54.1 Introduction
54.2 Immobilized Enzymes as Catalysts of Industrial Chemical Processes
54.3 Current Industrial Applications of Immobilized Enzymes
54.4 Immobilization Protocols
54.5 Adsorption of Industrial Enzymes on Ionic Exchangers
54.6 Selective Adsorption of Lipases on Hydrophobic Supports
54.7 Bioaffinity Immobilization
54.8 Covalent Immobilization
54.9 Immobilized Enzymes Without Supports
54.10 Improvement of Enzyme Properties by Immobilization Techniques
54.11 Modulation of Selectivity of Lipases by Using Different Immobilization Methods
54.12 Future Prospects: Immobilization of Enzymes Acting on Insoluble Substrates
54.13 Concluding Remarks
References
Chapter 55: Impeller Selection, Animal Cell Culture
55.1 Introduction
55.2 The Most Important Aspects Impacting Impeller Selection
55.3 Oxygen Transfer Considerations
55.4 “Shear Sensitivity” To Impeller-Generated Fluid Dynamic Stresses
55.5 Other Parameters Dependent on Agitation and Bioreactor Configuration: Implications for Impeller Selection
55.6 Important Parameters Not Related to Impeller Selection
55.7 Selection of Impeller/Geometry, Scale-Up, and Operational Strategy
Nomenclature
References
Chapter 56: Mammalian Cell Bioreactors
56.1 Introduction
56.2 Basic Reactor Operation and Kinetics
56.3 Cell Support for Mixing Vessels
56.4 Cell Culture Bioreactors
56.5 Concluding Remarks
References
Chapter 57: Mammalian Cell Culture Reactors, Scale-Up
57.1 Introduction
57.2 Background
57.3 Reactors for ADCs
57.4 Reactors for Suspension Cells
57.5 High-Cell-Density Bioreactors
57.6 Comparisons, Conclusions, and Future Developments
References
Chapter 58: Mass Transfer
58.1 Introduction
58.2 Diffusion Coefficient or Diffusivity
58.3 Gas–Liquid Mass Transfer
58.4 Liquid–Liquid Mass Transfer
58.5 Solid–Liquid Mass Transfer
58.6 Mass Transfer Behavior
Nomenclature
References
Chapter 59: Oxygen Transfer Rate Determination Methods
59.1 Introduction
59.2 Experimental Determination of kLa
59.3 Comparison of kLa Values Obtained by Different Methods
59.4 Correlation of kLa Values
59.5 A General Method for OTR Prediction
59.6 OTR in Miniature Bioreactors (Mini- and Micro- Devices)
59.7 Conclusion
Nomenclature
References
Chapter 60: Photobioreactors
60.1 Introduction
60.2 Photobioreactor Categories
60.3 Large Scale Commercial Photobioreactors
60.4 Concluding Remarks and Prospects
60.5 Conclusions
References
Chapter 61: Rheological Behavior of Fermentation Fluids
61.1 Introduction
61.2 Rheological Models
61.3 Rheometry
61.4 Exo-Biopolymer Fermentations
61.5 Mycelial Fermentations
61.6 Mixing
61.7 Conclusion
Nomenclature
References
Chapter 62: Rheology of Filamentous Microorganisms, Submerged Culture
62.1 Introduction
62.2 Rheological Measurements in Filamentous Fermentation Broths
62.3 Rheological Models
62.4 Viscosity as an Engineering Problem in Filamentous Fermentations
62.5 Viscosity as a Function of Suspension Characteristics
62.6 Control of the Rheological Properties of Filamentous Fermentation Broths
62.7 Equipment Used for Measuring Rheological Properties of Non-Newtonian Broths
62.8 Conclusion
Nomenclature
References
Chapter 63: Sampling and Sample Handling for Process Control
63.1 Sampling
63.2 Chemical Means
63.3 Physical Means
63.4 Chemical Means
63.5 Sampling from Gas Phase
63.6 Representative Samples
63.7 Reproducibility in Sampling
63.8 Sample Handling
63.9 Noninvasive Monitoring Methods
63.10 Integrated Processes
63.11 Commercial Systems
63.12 Conclusion
References
Chapter 64: Solid State Fermentation, Kinetics
64.1 Introduction
64.2 Aims of This Chapter
64.3 Organization and Scope
64.4 Description of Key Features of Solid-State Fermentation
64.5 Modeling of Microbial Phenomena
64.6 Modeling of Local Transport Phenomena
64.7 Modeling of Bulk Transport Phenomena
64.8 Parameter Estimation
64.9 Summary and Needs for the Future
References
Chapter 65: Solid Substrate Fermentation, Automation
65.1 Introduction
65.2 Measurement and Control of Critical Operating Variables
65.3 Automatic Control Strategies for Commercial-Scale Ssf Bioreactors
65.4 Case Study: Automation of a Pilot Packed Bed Bioreactor with Periodic Mixing
References
Further Reading
Chapter 66: Stainless Steels
66.1 The Nature of Stainless Steels
66.2 Types of Stainless Steels
66.3 Corrosion Mechanisms
66.4 Corrosion Susceptibility of Stainless Steels
66.5 Forms of Localized Corrosion
66.6 Factors Contributing to Localized Corrosion
66.7 Prevention of Localized Attack
66.8 Remedial Measures
66.9 Standard Operating Procedures
References
Chapter 68: Static Mixing, Fermentation Processes
67.1 Introduction
67.2 Structural Types and Construction
67.3 Effects of Static Mixers on Momentum Transfer
67.4 Mass Transfer in Presence of Static Mixers
67.5 Heat Transfer Using Static Mixers
67.6 Scale-up Considerations
67.7 Concluding Remarks
Nomenclature
References
Chapter 68: Transfer Phenomena in Multiphase Systems
68.1 Introduction
68.2 Description of the Modified Rushton Turbine Agitators
68.3 Multiphase System Hydrodynamics
68.4 Mass Transfer
68.5 Performance of the Modified Agitators in Biosynthesis of Antibiotics
References
Part V: Process analytical technologies (PAT)
Chapter 69: Bioprocess and Fermentation Monitoring
69.1 Introduction
69.2 General Aspects of Sensors and Monitoring
69.3 Methods of Monitoring
69.4 Sensor, Devices, and Technologies
69.5 Conclusion
References
Chapter 70: Flow Injection Analysis in Industrial Biotechnology
70.1 Introduction
70.2 Fundamentals of Flow Injection Analysis
70.3 SELECTED BIOANALYTICAL APPLICATIONS EXPLOITING FI
70.4 The Role of FI for Process Analysis/Monitoring
70.5 Fundamentals of Sequential Injection Analysis
70.6 Microfluidic Devices: Lab-on-Valve
70.7 Selected Bioanalytical Applications Exploiting SI-LOV
70.8 Conclusion and Perspectives
References
Chapter 71: Fluorescence Techniques for Bioprocess Monitoring
71.1 Introduction
71.2 Principles of On-Line Fluorescence Sensors for Bioprocess Monitoring
71.3 Application of On-Line 2D Fluorescence Spectroscopy
71.4 Conclusion
References
Chapter 72: Off-Line Analysis in Animal Cell Culture
72.1 Introduction
72.2 Analysis of Cell Density
72.3 Analysis of Medium Components
72.4 Analysis of Metabolic End Products
72.5 Analysis of Other Substances and Parameters
72.6 Analysis of Proteins
72.7 Analysis With Clinical Analyzers
Service Information
References
Chapter 73: Process Analytical Technology: Strategies For Biopharmaceuticals
73.1 Introduction
73.2 Pat Applications for Upstream Operations
73.3 Pat Applications in Harvest Operations
73.4 Pat Applications in Downstream Operations
73.5 Pat Applications in Drug Product Operations
73.6 Pat and Rapid Microbiological Methods
73.7 Applications of Chemometrics in Pat
73.8 Case Studies on Implementation of Pat
73.9 Conclusion and Future Perspective
References
Chapter 74: Vent Gas Analysis
74.1 Introduction
74.2 Methods of Vent Gas Analysis
74.3 Installation and Operation
74.4 Parameter Calculation
References
Part VI: Upstream cGMP operations
Chapter 75: Antibody Manufacture, Disposable Systems
75.1 Introduction
75.2 Single-Use Devices in Antibody Production Processes: An Overview
75.3 Disposable Bioreactors in MAb Production Processes
75.4 Conclusions and Apparent Trends
References
Chapter 76: Bioreactor Operations
76.1 Preparation
76.2 Sterilization
76.3 Charging
76.4 Culture Initiation
76.5 Harvesting
References
Chapter 77: Bioreactors, Cell Culture, Commercial Production
77.1 Introduction
77.2 Design of Bioreactors
77.3 Process Operations
77.4 Process Scale-Up for Production
77.5 Conclusions
Nomenclature
References
Chapter 78: Biotransformation, Process Optimization
78.1 Introduction
78.2 Whole Cells or Isolated Enzymes?
78.3 Classification of Different Reactors
78.4 Process Development Step by Step
78.5 Examples
References
Chapter 79: Foam Formation and Control in Bioreactors
79.1 An Overview of the Mechanisms of Foam Formation in Bioreactors
79.2 Description of the Foam at the Microscopic Level: Molecular Mechanisms at the Interfaces
79.3 Description of the Foam at the Macroscopic Level: Gas–Liquid Dispersion in the Reactor
79.4 Methods used to Evaluate the Foaming Properties of a Solution
79.5 Detection and Regulation of Foam in Bioprocesses
79.6 Chemical Methods Used to Prevent Foam
79.7 Physical Methods used to Prevent or Reduce Foam Formation in Bioreactors
79.8 Impact of Foam Formation and Prevention
79.9 Foam in Biotechnological Processes: Present Knowledge and Future Prospects
References
Chapter 80: Pilot Plants, Design and Operation
80.1 Introduction
80.2 Operational Concepts and Processing Requirements
80.3 Design
80.4 Operation
References
Chapter 81: Shear Sensitivity
81.1 Introduction
81.2 Shear Forces in Bioreactors
81.3 Response to Shear
81.4 Concluding Remarks
Nomenclature
Greek Symbols
References
Chapter 82: Sterilization and Decontamination, Bioprocess Equipment
82.1 Introduction
82.2 Sterilization by Heat
82.3 Filtration
82.4 Fumigation
82.5 Gamma Irradiation
82.6 Ultraviolet Light
82.7 Liquid Disinfectants
82.8 Virus Testing and Elimination from Biological Products
82.9 Prions
82.10 Regulatory and Safety Issues
References
Index
Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data:
Upstream industrial biotechnology / edited by Michael C. Flickinger.
v. cm
nIcludes bibliographical references and index.
Contents: volume 1. Expression Systems and Process Development- volume 2. Equipment, Process Design, Sensing, Control and cGMP Operations.
ISBN 978-1-118-13123-7 (set : hardback) 1. Biotechnology. I. Flickinger, Michael C., editor of compilation. II. Encyclopedia of industrial biotechnology. Selections.
TP248.2.U675 2013
660.6--dc23
2012030697
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
