An Essential Guide to Electronic Material Surfaces and Interfaces - Leonard J. Brillson - E-Book

An Essential Guide to Electronic Material Surfaces and Interfaces E-Book

Leonard J. Brillson

0,0
70,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

An Essential Guide to Electronic Material Surfaces and Interfaces is a streamlined yet comprehensive introduction that covers the basic physical properties of electronic materials, the experimental techniques used to measure them, and the theoretical methods used to understand, predict, and design them.

Starting with the fundamental electronic properties of semiconductors and electrical measurements of semiconductor interfaces, this text introduces students to the importance of characterizing and controlling macroscopic electrical properties by atomic-scale techniques. The chapters that follow present the full range of surface and interface techniques now being used to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth for students to master the fundamental principles, with numerous examples to illustrate the strengths and limitations for specific applications. As well as references to the most authoritative sources for broader discussions, the text includes internet links to additional examples, mathematical derivations, tables, and literature references for the advanced student, as well as professionals in these fields. This textbook fills a gap in the existing literature for an entry-level course that provides the physical properties, experimental techniques, and theoretical methods essential for students and professionals to understand and participate in solid-state electronics, physics, and materials science research.

An Essential Guide to Electronic Material Surfaces and Interfaces is an introductory-to-intermediate level textbook suitable for students of physics, electrical engineering, materials science, and other disciplines. It is essential reading for any student or professional engaged in surface and interface research, semiconductor processing, or electronic device design. 

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 541

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

Copyright

Preface

About the Companion Websites

Chapter 1: Why Surfaces and Interfaces of Electronic Materials

1.1 The Impact of Electronic Materials

1.2 Surface and Interface Importance as Electronics Shrink

1.3 Historical Background

1.4 Next Generation Electronics

1.5 Problems

References

Further Reading

Chapter 2: Semiconductor Electronic and Optical Properties

2.1 The Semiconductor Band Gap

2.2 The Fermi Level and Energy Band Parameters

2.3 Band Bending at Semiconductor Surfaces and Interfaces

2.4 Surfaces and Interfaces in Electronic Devices

2.5 Effects of Localized States: Traps, Dipoles, and Barriers

2.6 Summary

2.7 Problems

References

Further Reading

Chapter 3: Electrical Measurements of Surfaces and Interfaces

3.1 Sheet Resistance and Contact Resistivity

3.2 Contact Measurements: Schottky Barrier Overview

3.3 Heterojunction Band Offsets: Electrical Measurements

3.4 Summary

3.5 Problems

References

Further Reading

Chapter 4: Localized States at Surfaces and Interfaces

4.1 Interface State Models

4.2 Intrinsic Surface States

4.3 Extrinsic Surface States

4.4 The Solid State Interface: Changing Perspectives

4.5 Problems

References

Further Reading

Chapter 5: Ultrahigh Vacuum Technology

5.1 Ultrahigh Vacuum Chambers

5.2 Pumps

5.3 Manipulators

5.4 Gauges

5.5 Residual Gas Analysis

5.6 Deposition Sources

5.7 Deposition Monitors

5.8 Summary

5.9 Problems

References

Further Reading

Chapter 6: Surface and Interface Analysis

6.1 Surface and Interface Techniques

6.2 Excited Electron Spectroscopies

6.3 Principles of Surface Sensitivity

6.4 Multi-technique UHV Chambers

6.5 Summary

6.6 Problems

References

Further Reading

Chapter 7: Surface and Interface Spectroscopies

7.1 Photoemission Spectroscopy

7.2 Auger Electron Spectroscopy

7.3 Electron Energy Loss Spectroscopy

7.4 Rutherford Backscattering Spectrometry

7.5 Surface and Interface Technique Summary

7.6 Problems

References

Further Reading

Chapter 8: Dynamical Depth-Dependent Analysis and Imaging

8.1 Ion Beam-Induced Surface Ablation

8.2 Auger Electron Spectroscopy

8.3 X-Ray Photoemission Spectroscopy

8.4 Secondary Ion Mass Spectrometry

8.5 Spectroscopic Imaging

8.6 Depth-Resolved and Imaging Summary

8.7 Problems

References

Further Reading

Chapter 9: Electron Beam Diffraction and Microscopy of Atomic-Scale Geometrical Structure

9.1 Low Energy Electron Diffraction – Principles

9.2 Reflection High Energy Electron Diffraction

9.3 Scanning Electron Microscopy

9.4 Transmission Electron Microscopy

9.5 Electron Beam Diffraction and Microscopy Summary

9.6 Problems

References

Further Reading

Chapter 10: Scanning Probe Techniques

10.1 Atomic Force Microscopy

10.2 Scanning Tunneling Microscopy

10.3 Ballistic Electron Energy Microscopy

10.4 Atomic Positioning

10.5 Summary

10.6 Problems

References

Further Reading

Chapter 11: Optical Spectroscopies

11.1 Overview

11.2 Optical Absorption

11.3 Modulation Techniques

11.4 Multiple Surface Interaction Techniques

11.5 Spectroscopic Ellipsometry

11.6 Surface Enhanced Raman Spectroscopy

11.7 Surface Photoconductivity

11.8 Surface Photovoltage Spectroscopy

11.9 Photoluminescence Spectroscopy

11.10 Cathodoluminescence Spectroscopy

11.11 Summary

11.12 Problems

References

Further Reading

Chapter 12: Electronic Material Surfaces

12.1 Geometric Structure

12.2 Chemical Structure

12.3 Electronic Structure

12.4 Summary

12.5 Problems

References

Further Reading

Chapter 13: Surface Electronic Applications

13.1 Charge Transfer and Band Bending

13.2 Oxide Gas Sensors

13.3 Granular Gas Sensors

13.4 Nanowire Sensors

13.5 Chemical and Biosensors

13.6 Surface Electronic Temperature, Pressure, and Mass Sensors

13.7 Summary

13.8 Problems

References

Further Reading

Chapter 14: Semiconductor Heterojunctions

14.1 Geometrical Structure

14.2 Chemical Structure

14.3 Electronic Structure

14.4 Conclusions

14.5 Problems

References

Further Reading

Chapter 15: Metal–Semiconductor Interfaces

15.1 Overview

15.2 Metal–Semiconductor Interface Dipoles

15.3 Interface States

15.4 Self-Consistent Electrostatic Calculations

15.5 Experimental Schottky Barriers

15.6 Interface Barrier Height Engineering

15.7 Atomic-Scale Control

15.8 Summary

15.9 Problems

References

Further Reading

Chapter 16: Next Generation Surfaces and Interfaces

16.1 Current Status

16.2 Current Device Challenges

16.3 Emerging Directions

16.4 The Essential Guide Conclusions

Appendix A: Glossary of Commonly Used Symbols

Appendix B: Table of Acronyms

Appendix C: Table of Physical Constants and Conversion Factors

Appendix D: Semiconductor Properties

Index

End User License Agreement

Pages

xiii

xv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

76

77

77

78

78

79

79

80

80

81

82

81

82

83

83

84

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Guide

Cover

Table of Contents

Preface

Begin Reading

List of Illustrations

Chapter 1: Why Surfaces and Interfaces of Electronic Materials

Figure 1.1 Source–gate–drain structure of a silicon transistor.

Figure 1.2 Interfaces involved in forming the transistor structure including: (a) the source or drain metal–semiconductor contact with a reacted interface, (b) the gate metal–semiconductor contact separated by an insulator in and near which charges are trapped, and (c) dopant impurity atoms implanted below the surface of a semiconductor to control its carrier concentration.

Figure 1.3 Multilayer, multi-material interconnect architectures at the nanoscale. Feature size of interconnects at right is 45 nm [1].

Figure 1.4 (a) LEC growth of GaAs crystal pulled from a molten bath inside a heated crucible.

Figure 1.5 (a) LPE method in which a growth substrate slides under pockets of melted constituents that condense to form a stack of semiconductor layers on the substrate. (b) MBE method in which constituents evaporated from individual crucibles of pure elements deposit layer-by-atomic layer monitored by reflection high energy diffraction (RHEED) on a heated substrate in vacuum.

Figure 1.6 A point contact transistor with three gold contacts on a germanium crystal [18].

Chapter 2: Semiconductor Electronic and Optical Properties

Figure 2.1 Evolution of atomic orbitals from discrete levels (right) to energy bands (center) and a band gap (left) as atomic separation decreases inside a semiconductor, in this case silicon with two electrons each in its outer 3s and 3p orbitals [1].

Figure 2.2 Absorption coefficient versus photon energy spectra for . Absorption threshold increases as Al content and band gap increase.

Figure 2.3 Schematic energy band diagram to illustrate semiconductor vacuum level , conduction band , Fermi level , valence band , and ionization potential along with metal work function , semiconductor work function , and electron affinity .

Figure 2.4 Conduction and valence band bending at an n-type semiconductor surface. The slope of band bending corresponds to the electric field within the depletion region that moves electrons toward the bulk and holes toward the surface. remains constant relative to the bulk conduction and valence bands.

Figure 2.5 Representative electronic device structures whose operation depends on interfaces. (a) Solar cell based on Schottky barrier ; (b) quantum well based on carrier confinement by a double heterojunction; (c) resonant tunnel diode based on multilayer heterojunctions; (d) high electron mobility transistor based on surface inversion layer.

Chapter 3: Electrical Measurements of Surfaces and Interfaces

Figure 3.1 (a) Representative TLM test structure and (b) plot of total resistance versus distance.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!