8,99 €
В книге рассматривается подход к инженерному образованию, который интегрирует личностные, межличностные и профессиональные навыки с дисциплинарными техническими знаниями с целью подготовить инженера, способного к инновациям и предпринимательству. Инженерное образование ставится в контекст инженерной деятельности, которая включает планирование, проектирование, производство и применение (Conceiving, Designing, Implementing, and Operating — CDIO), т.е. полный жизненный цикл инженерных процессов, продуктов и систем. Кроме того, описываются разработка и применение модели CDIO. Настоящее издание является руководством по улучшению образовательных программ для подготовки молодых инженеров во всем мире.
Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:
Seitenzahl: 476
Veröffentlichungsjahr: 2019
УДК 337
ББК 74.5
П26
Редакционный совет серии
ЯРОСЛАВ КУЗЬМИНОВ, ИСАК ФРУМИН,
ВАЛЕРИЙ АНАШВИЛИ, ЕЛЕНА ПЕНСКАЯ, МАРИЯ ЮДКЕВИЧ, СЕРГЕЙ ФИЛОНОВИЧ, ЛЕВ ЛЮБИМОВ, АЛЕКСАНДР СИДОРКИН, ДАНИИЛ АЛЕКСАНДРОВ, ВИКТОР БОЛОТОВ
Дизайн серии
ВАЛЕРИЙ КОРШУНОВ
Авторский коллектив
Э.Ф. КРОУЛИ, Й. МАЛМКВИСТ, С. ОСТЛУНД, Д.Р. БРОДЕР, К. ЭДСТРЕМ
Научный редактор перевода
АЛЕКСАНДР ЧУЧАЛИН
Переосмысление инженерного образования. Подход CDIO / Э. Ф. Кроули, Й. Малмквист, С. Остлунд, Д. Р. Бродер, К. Эдстрем; пер. с англ. С. Рыбушкиной; под науч. ред. А. Чучалина; Нац. исслед. ун-т «Высшая школа экономики». — М.: Изд. дом Высшей школы экономики, 2015. — 504 с. — (Библиотека журнала «Вопросы образования»). — ISBN 978-5-7598-1218-0 (в пер.).
В книге рассматривается подход к инженерному образованию, который интегрирует личностные, межличностные и профессиональные навыки с дисциплинарными техническими знаниями с целью подготовить инженера, способного к инновациям и предпринимательству. Инженерное образование ставится в контекст инженерной деятельности, которая включает планирование, проектирование, производство и применение (Conceiving,Designing,Implementing,andOperating—CDIO), т.е. полный жизненный цикл инженерных процессов, продуктов и систем. Кроме того, описываются разработка и применение моделиCDIO.
Настоящее издание является руководством по улучшению образовательных программ для подготовки молодых инженеров во всем мире.
УДК 337
ББК 74.5
П26
ISBN978-5-7598-1218-0 (рус.)
ISBN978-3-319-05560-2 (англ.)
TranslationfromEnglishlanguageedition:RethinkingEngineeringEducationbyEdwardF.Crowley,JohanMalmqvist,SörenÖstlund,DorisR.BrodeurandKristinaEdström.
Copyright © Springer International Publishing Switzerland 2007, 2014 Springer is a part of Springer Science+Business Media. Allrightsreserved.
© Перевод на русский язык, оформление. Издательский дом Высшей школы экономики, 2015
Электронное издание подготовлено компанией «Айкью Издательские решения» (www.iqepub.ru)
Предисловие к первому изданию
Примечание автора
Подготовка инженеров после 2020 года
Предисловие ко второму изданию
1. Введение и мотивация
Обоснование
Необходимость перемен
Определение
Знания
Навыки
Личностные качества
Книга
Литература
2. ПодходCDIO
Введение
Цели и задачи главы
Цели
Модернизация учебного плана
Педагогические принципы
Заключение
Вопросы для обсуждения
Литература
3.CDIOSyllabus: результаты освоения инженерных образовательных программ
Введение
Цели и задачи главы
Инженерные знания и навыки
Результаты обучения и уровни усвоения знаний и навыков
Заключение
Вопросы для обсуждения
Литература
4. Разработка интегрированного учебного плана
Введение
Цели и задачи главы
Обоснование необходимости интегрированного учебного плана
Проектирование интегрированного учебного плана
Заключение
Вопросы для обсуждения
Литература
5. Проектно-внедренческая деятельность и рабочее пространство для инженерной деятельности
Введение
Цели и задачи главы
Обоснование необходимости проектно-внедренческой деятельности
Интегрирование проектно-внедренческой деятельности в программу
Сложности, возникающие в процессе проектно-внедренческой деятельности
Рабочее пространство для инженерной деятельности
Заключение
Вопросы для обсуждения
Литература
6. Преподавание и обучение
Введение
Цели и задачи главы
Интересы и мотивация студентов
Интегрированное обучение
Разработка курса в соответствии с подходомCDIO
Методы активного и практического (экспериментального) обучения
Преимущества и проблемы интегрированного обучения, методов активного и практического обучения
Заключение
Вопросы для обсуждения
Литература
7. Оценка обучения
Введение
Цели и задачи главы
Процесс оценки результатов обучения
Согласование методов оценки с результатами обучения
Методы оценки обучения студентов
Использование результатов оценки для улучшения преподавания и обучения
Основные преимущества и проблемы оценки обучения
Заключение
Вопросы для обсуждения
Литература
8. Адаптация и применение подходаCDIO
Введение
Цели и задачи главы
Разработка программыCDIOкак пример организационной и культурной реформы
Повышение квалификации и поддержка преподавателей
Ресурсы, направленные на поддержку реформы
Заключение
Вопросы для обсуждения
Литература
9. Оценка программы
Введение
Цели и задачи главы
Оценка программы на основе стандартов
СтандартыCDIOи основные оценочные вопросы
Обоснование и организация стандартовCDIO
Методы сбора данных и оценки программ
Оценка программы на соответствие стандартамCDIO
Процесс постоянного улучшения программы
Общее воздействие программCDIO
Заключение
Вопросы для обсуждения
Литература
10. История становления инженерного образования
Введение
Цели и задачи главы
Зарождение инженерного образования
Инженерная деятельность и промышленное развитие
Научная база для инженерной деятельности
Отказ от практических навыков и опыта
Появление чрезмерного количества новых областей знаний и размытие границ между ними
Современные проблемы
Заключение
Вопросы для обсуждения
Литература
11. Перспективы развития
Введение
Цели и задачи главы
Факторы, стимулирующие изменения в инженерном образовании
Перспективы развития подходаCDIO
Заключение
Вопросы для обсуждения
Литература
Приложение 1:CDIOSyllabus2.0
Приложение 2:CDIOStandards2.0
Предисловие
СтандартыCDIO
Самооценка соответствия
Над книгой работали
Примечания
Когда в 2007 г. вышло в свет первое издание книги «Переосмысление инженерного образования: подходCDIO», Чарльз М. Вест уже покинул пост президента Массачусетского технологического института, который он занимал на протяжении 14 лет. В последние годы жизни он являлся также президентом Национальной инженерной академии США. Президент Ч. Вест умер 12 декабря 2013 г. С его уходом инженерное сообщество и инженерное образование потеряли истинного вдохновителя и лидера. Мы публикуем его предисловие без изменений, поскольку изложенные в нем мысли не утратили своей актуальности и значимости до сегодняшнего дня.
Моя карьера развивалась вXXвеке — эпохе физики, электроники, высокоскоростной коммуникации и транспорта. Всем нам (и в первую очередь нашим студентам) посчастливилось дожить до вступления вXXIвек — эпоху, в которой основную роль, очевидно, будут играть биология и информация.
В связи с переменами, которым мы являемся свидетелями, пришло время переосмыслить и инженерное образование. Оглядываясь на более чем 35-летний опыт работы преподавателем инженерного вуза, я понимаю, что многие вещи претерпели кардинальные изменения, а некоторые нисколько не изменились. За последние 35 лет мы столкнулись с необходимостью сделать обучение на первом курсе более захватывающим, обратиться к реальной инженерной практике и привнести в инженерную профессию богатство и разнообразие человеческой деятельности. Современные студенты должны уметь совмещать естественные и информационные науки на нано-, микро- и макроуровнях, владеть профессиональной этикой и ощущать социальную ответственность, быть творческими личностями и новаторами, иметь развитые навыки устного и письменного общения. Студенты должны быть готовы стать гражданами мира и понимать, какой вклад могут внести инженеры в развитие общества. Они должны понимать принципы развития бизнеса, быть экспертами в области разработки и производства продукции, знать, как планировать, проектировать, производить и применять сложные инженерные системы. Они должны вести профессиональную деятельность, применяя принципы устойчивого развития, и быть готовы жить и работать в глобальном мире. Трудная задача… возможно, даже невыполнимая.
Но так ли это на самом деле? В стенах Массачусетского технологического института и других вузов я встречаю студентов, способных выполнить все перечисленные требования, и даже больше. Значит, мы должны стремиться к большему. Вопрос лишь в том, каким образом мы сможем включить все обозначенные аспекты в образовательную программу? Что из имеющегося опыта должно быть сохранено, а что необходимо изменить?
Задумываясь о предстоящих переменах, важно помнить, что некоторые вещи остаются неизменны. Так, например, студентами по-прежнему движут страсть, любопытство, чувство сопричастности и мечты. И хотя мы не можем точно знать, чему их следует учить, мы можем обратить внимание на условия и контекст образования, а также на идеи, стимулы и реальные проекты, с которыми могут столкнуться выпускники вузов.
Другой неизменный фактор — потребность студентов в приобретении прочной научной основы, базовых инженерных знаний и аналитических навыков. С моей точки зрения, глубокие фундаментальные знания по-прежнему остаются наиболее важным преимуществом подготовки инженеров в университете. Наше представление об инженерных принципах было сформировано под воздействием так называемой научно-технической революции. Она зародилась во многом благодаря преподавателям Массачусетского технологического института, которые, используя опыт создания радиолокационных систем во время Второй мировой войны, разработали принципиально новый подход к инженерной профессии и инженерному образованию. Огромным достоянием этой эпохи стал новый мир инженерного образования, созданный при участии многих университетов. Он был построен на прочной научной основе вместо традиционного феноменологического подхода, изучения графиков и инструкций, выполнения лабораторных практикумов. Создатели новой концепции инженерного образования не стремились лишать инженерную деятельность присущего ей азарта, запрещать студентам проектировать и строить, работать в команде и следовать законам этики. Однако что-то было утеряно на новом пути. Сейчас нам предстоит переосмыслить инженерное образование и найти баланс.
Возможно, я слишком старомоден, но я по-прежнему убежден, что мастерски спланированные и прочитанные лекции — превосходный метод обучения. Они все еще необходимы. Тем не менее даже мне приходится признать правоту любимого изречения моего друга, лауреата Нобелевской премии по физике 1969 г. Мюррея Гелл-Манна: «Нам нужно уходить от мудреца на сцене к гиду, стоящему в стороне». Студийное обучение, командные проекты, решение задач, проведение экспериментов и исследований должны стать неотъемлемыми элементами инженерного образования.
Философия подхода CDIO подхватила эти главные особенности современного инженерного образования — увлеченность инженерной деятельностью, глубокое усвоение базовых навыков и понимание вклада инженеров в развитие общества. Подход CDIO позволяет разжечь в наших студентах страсть к профессии.
Я советую вам познакомиться с этим комплексным подходом и задуматься о том, как он может повлиять на подготовку специалистов по инженерным программам в вашем вузе.
Чарльз М. Вест,
президент Национальной инженерной академии США
После выхода в свет первого издания книги «Переосмысление инженерного образования: подходCDIO» количество университетов, применивших подходCDIOхотя бы к одной инженерной программе и присоединившихся к инициативеCDIO, увеличилось в 4 раза. Хотя базовые принципы, положенные в основу подхода, не изменились, в настоящее время область его применения значительно расширилась и включает, например, химическую технологию, биоинженерию, горную промышленность. В последнее время общие принципы подходаCDIOтакже применяются к программам по менеджменту и к другим областям профессиональной подготовки.
Основные документы подхода были пересмотрены. В перечень результатов обучения CDIOSyllabus 2.0 были добавлены два раздела, касающиеся лидерства и предпринимательства. Таким аспектам, как этика, социальная ответственность и устойчивое развитие было уделено большее внимание по сравнению с предыдущей версией перечня, где они не выделялись как отдельные пункты. В стандартах CDIO 2.0 появились рубрики для самооценки. Общая структура глав книги по-прежнему соответствует стандартам CDIO. По сравнению с первым изданием были пересмотрены главы, посвященные вопросам применения подхода, истории и перспективам инженерной деятельности.
В главе 1 подход CDIO представлен как направление комплексного реформирования инженерного образования во всем мире. Здесь описаны ключевые особенности подхода: понимание важности обучения в контексте инженерной практики, определение планируемых результатов обучения студентов, разработка учебного плана и применение методик обучения, в которых дисциплинарные знания интегрируются с универсальными, а также профессиональными навыками и личностными качествами. Особенность подхода — проведение исследовательски-ориентированных мероприятий, которые в значительной степени повышают качество высшего инженерного образования. Таким образом, глава 1 представляет собой сводный аналитический обзор, предваряющий изложение последующего материала книги. Во втором издании произошло два изменения. Во-первых, в главу 1 из главы 2 был перенесен раздел «Необходимость перемен», чтобы усилить обоснование необходимости нового подхода к инженерному образованию (подхода CDIO) и подчеркнуть актуальность книги. Во-вторых, было дано определение термину «инициатива CDIO». Теперь он используется исключительно для обозначения сообщества, состоящего из более чем 100 университетов, которые сотрудничают в вопросах применения подхода CDIO к инженерным программам. Впервые инициатива CDIO упоминается в главе 8 раздела, посвященного описанию ресурсов, разработанных в целях оказания поддержки применению подхода CDIO.
В первом издании книги глава 2 касалась основных отличительных характеристик подхода CDIO, начиная от описания основной задачи и заканчивая целями, видением проблемы и педагогическими принципами подхода. В этой же главе представлены основные положения перечня результатов обучения CDIO и стандартов CDIO, а также способов адаптации и применения подхода, подробно описанные в последующих главах. Название главы «Обзор» изменилось на «Подход CDIO», чтобы подчеркнуть степень детализации описания. Кроме того, был пересмотрен раздел «Требования к реформированию инженерного образования». Обновленный раздел призван объяснить основополагающий принцип подхода CDIO, который заключается в применении модели «планирование—проектирование—производство—применение» как контекста инженерного образования. Наконец, в этой главе подробно рассмотрены пять новых контекстных факторов, которые оказали очевидное влияние на развитие подхода CDIO с момента выхода первого издания: устойчивое развитие, глобализация, инновации, лидерство и предпринимательство.
В главе 3 мы подробнее останавливаемся на истории создания и содержании CDIOSyllabus, т.е. системы знаний, навыков и личностных качеств, необходимых современным инженерам и лежащих в основе реформы инженерных образовательных программ. Здесь объясняется необходимость формулирования результатов обучения в терминах личностных и межличностных компетенций, навыков создания объектов, процессов и систем, дисциплинарных знаний. В главе 3 произошло три основных изменения. Во-первых, CDIOSyllabus был обновлен и расширен до версии 2.0. Во-вторых, глава была дополнена обсуждением способов включения в CDIOSyllabus 2.0 пяти новых факторов, речь о которых шла в главе 2. В-третьих, был пересмотрен последний раздел главы в целях описания процедуры определения уровня сформированности навыков и уточнения формулировок результатов обучения на основе CDIOSyllabus. Примеры анкетирования заинтересованных сторон, вошедшие в первое издание, сохранены, но подверглись значительным сокращениям. Наш коллега Перри Дж. Армстронг, профессор Королевского университета Белфаста, участвовавший в написании главы 3, к сожалению, скончался после выхода первого издания книги. Однако мы сохранили его имя в числе авторов из благодарности за огромный вклад, который он внес, работая над главой. Мы также благодарны профессору Ливерпульского университета Питеру Дж. Гудхью за обновление примера 3.1. СоответствиеCDIOSyllabusстандартамUK-SPEC.
В главе 4 обосновывается учебный план, в котором интегрированы инженерные навыки и дисциплинарные знания. Кроме этого, здесь предлагается технология проектирования учебного плана на основе анализа существующей программы и условий ее реализации с применением методов проектирования и внедрения интегрированного учебного плана. На дополнительном рисунке в примере 4.1 представлены компоненты интегрированного учебного плана и сделан акцент на важности интеграции и поступательного движения в процессе обучения. Новый пример, подготовленный нашими коллегами из Сингапурского политехнического института (пример 4.3), демонстрирует интегрированный учебный план, охватывающий все программы вуза. Для большей ясности многие количественные данные были уточнены.
Цели главы 5 переформулированы. Глава дополнена разделом, посвященным описанию проектно-внедренческой деятельности и соответствующих педагогических моделей. Вся глава была пересмотрена с позиции знаний и опыта, приобретенных с 2007 г. до настоящего времени. Мы также попытались обобщить свои идеи и убрать ссылки на конкретные программы в области машиностроения и аэрокосмической отрасли, кроме тех случаев, когда это необходимо. В новом разделе более четко проведены аналогии проектно-внедренческой деятельности с существующими педагогическими моделями проблемно-ориентированного и проектно-организованного обучения. Общий акцент сделан на постоянное повышение комплексности результатов обучения и формирование инженерных навыков и компетенций в процессе выполнения нескольких последовательных проектов, предусматривающих приобретение опыта проектно-внедренческой деятельности. С целью устранения неясностей некоторые примеры даны в сокращенном варианте или опущены. В частности, пример 5.1. Модель управления проектами в Университете Линчёпинга исключен, так как он ранее описывался в главе 4. Раздел, посвященный рабочему пространству, стал более ориентирован на функции и обучение, при этом меньше внимания уделяется описанию организационных вопросов и используемого оборудования.
Основная цель главы 6 — описание процесса реализации интегрированного обучения на уровне отдельных дисциплин в контексте ожиданий студентов. Здесь предлагается модель конструктивного соответствия, приводятся примеры активного и практико-ориентированного обучения. Наконец, в этой главе описываются способы реализации учебных мероприятий, обладающих большим стимулирующим потенциалом, способных повысить привлекательность инженерного образования. Термин «личностные, межличностные компетенции и навыки создания объектов, процессов и систем» замещен понятием «профессиональные навыки», кроме случаев, когда он встречается в стандартах 7 и 8 CDIO или когда необходима конкретизация значений. Обсуждение концептуальных тестов и использование компьютеров при проведении опросов вошли в раздел, посвященный методу перекрестного обучения в соответствии с результатами исследований и сложившейся практикой. Раздел, посвященный поддержке преподавателей, участвующих в процессе внедрения интегрированного обучения, перенесен в одну из последующих глав в рамках общего обсуждения вопросов, связанных с повышением квалификации преподавателей.
В главе 7 подчеркивается значение оценки результатов освоения образовательных программ и приведения методов оценивания в соответствие с методами преподавания. Кроме этого, даны примеры различных методов оценки. В этой главе также произошли изменения, способствующие большей ясности изложения и подчеркивающие очевидную взаимосвязь с предыдущей главой «Преподавание и обучение». Модель конструктивного соответствия учебного плана, методов преподавания и оценки, описанная в главе 6, здесь вновь рассматривается сквозь призму оценки. Вместо примера использования портфолио в одном из вузов приводится вариант оценочного листа, который, будем надеяться, найдет свою сферу применения. В завершении главы объясняется взаимосвязь между результатами оценки и непрерывным улучшением, а также описываются основные преимущества и проблемы оценки результатов обучения.
В главе 8 приводятся основные факторы, влияющие на успех организационных изменений в вузе и разработку программы CDIO как примера изменения его культуры. Здесь также предлагаются мероприятия, позволяющие лидерам реформы повысить квалификацию преподавателей как в области личностных и межличностных компетенций и навыков создания объектов, процессов и систем, так и в области преподавания и оценивания. Кроме того, в главе 8 описаны ресурсы, способствующие адаптации и применению подхода CDIO к инженерным программам. Два новых примера иллюстрируют, как факторы изменений, описанные в этой главе, повлияли на реформу системы образования на уровне отдельного факультета и университета в целом.
Глава 9 посвящена описанию целей и задач оценки программы на основе стандартов CDIO как способа вынесения суждения об успехе применения подхода CDIO в рамках отдельной программы. Здесь речь идет об особенностях оценки программы на основе стандартов и других ключевых вопросах, лежащих в основе оценки программы, разнообразии методов оценки, связей между оценкой, постоянным улучшением и обеспечением качества программ, применяющих подход CDIO. Раздел «Методы сбора данных и оценки программ» был дополнен кратким описанием исследований по оценке эффективности программ студентами. Основным изменением, однако, стало включение в стандарты CDIO рубрик по самооценке.
Как и в первом издании, в главе 10 описываются исторические условия появления идеи реформирования инженерного образования с применением подхода CDIO. Здесь обсуждаются основополагающие и часто задаваемые вопросы, касающиеся целей, содержания и структуры инженерного образования. Описание технических вузов и различных подходов к обучению дано с позиции национальных различий и противоречий между теорией и практикой. Глава заканчивается обсуждением современных проблем инженерного образования и задач, стоящих перед ним в связи с ориентацией образования на науку и необходимостью формирования навыков коммуникации и работы в команде, важных для междисциплинарного взаимодействия и проектирования. Здесь обсуждаются новые компетенции, которые должны иметь инженеры в области экологии и климатологии, антропогенной среды, взаимодействия с клиентами, глобализации и предпринимательства. Педагогические приемы, применяемые разными вузами, зависят от страны и традиций, в свете чего актуальность приобретает гибкость подхода CDIO, что позволяет применять его в разных ситуациях.
В последней главе дается обзор изменений, происшедших в подходе CDIO после 2007 г., и подчеркивается увеличение количества университетов-партнеров, применяющих данный подход для разработки своих программ. Как и в первом издании, здесь определяются факторы, стимулирующие изменения в инженерном образовании. В разделе, посвященном перспективам развития подхода CDIO и предполагаемому расширению инициативы CDIO (сообщества университетов, применивших подход CDIO хотя бы к одной инженерной программе), описываются достижения в областях, намеченных в 2007 г., а также потенциал проекта и направления его развития в будущем.
Мы благодарны за вклад наших коллег в написание каждой главы и за предоставленные ими примеры и кейсы. Как всегда, мы ждем комментариев и желаем всем успеха на пути реформирования инженерного образования.
Эдвард Ф. Кроули
Йохан Малмквист
Сорен Остлунд
Дорис Р. Бродер
Кристина Эдстрем
Задача инженерного образования — подготовка выпускников к успешной профессиональной деятельности, а значит, формирование у студентов предметной компетентности, понимания социального контекста и стремления к инновациям. Для повышения уровня производительности, предпринимательства и лидерства в условиях возрастающей технологической сложности объектов, процессов и систем существенными становятся соответствующие знания, навыки и личностные качества, что обосновывает крайнюю необходимость модернизации содержания базового инженерного образования на уровне бакалавриата.
В последние десятилетия ведущие вузы, промышленные и правительственные организации обратили внимание на необходимость реформ и сформулировали свои представления о требуемых компетенциях инженеров. Благодаря этому стало возможно определить основную задачу инженерного образования как подготовку выпускников, способных планировать, проектировать, производить и применять сложные инженерные объекты, процессы и системы с высокой добавленной стоимостью.
Ниже мы предлагаем вашему вниманию 12 принципов, способствующих успешному решению поставленной задачи в рамках инженерных образовательных программ. Первый из таких принципов — рассмотрение инженерного образования в контексте реальной инженерной практики: планирования, проектирования, производства и применения объектов, процессов и систем. Второй принцип — привлечение заинтересованных сторон к определению требований к результатам освоения образовательных программ. Для реализации сформулированных таким образом образовательных потребностей нами были разработаны 10 дополнительных принципов, которые в совокупности представляют собой комплексный и широко применимый подход к совершенствованию образовательных программ, методов преподавания, а также инфраструктуры технических вузов, основанный на надежной системе оценивания и постоянного улучшения. Тем самым мы стремимся значительно усовершенствовать содержание базовых инженерных образовательных программ и повысить качество технического образования в мире.
Инженеры создают объекты на благо общества. Цитируя Теодора фон Кармана [1], «ученые открывают существующий мир, инженеры же создают мир, которого никогда не было». По определению Устава Британского института гражданских инженеров 1828 г. [2], инженерная деятельность — это «искусство направления больших природных источников энергии на нужды и во благо человека». Несмотря на то что сегодня мы могли бы переформулировать это высказывание, отметив ответственность человека перед природой за распределение ее ресурсов, несомненным остается тот факт, что создание новых объектов, так же как и разумное использование природных ресурсов, остается одной из задач современного инженера.
Современные инженеры вовлечены во все этапы жизненного цикла объектов, процессов и систем, которые могут значительно отличаться (быть простыми и невероятно сложными), но имеют одну общую черту: они отвечают потребностям общества. Хорошего инженера отличает умение наблюдать и прислушиваться к требованиям клиента. Он определяет масштаб объекта или системы и помогает разработать общую концепцию. Другими словами, он участвует в планировании создания объекта или системы. Современные инженеры проектируют объекты, процессы и системы, обладающие технологической природой. Иногда они используют прорывные технологии, открывающие новые рубежи и создающие новые возможности. Порой же они используют существующие технологии, адаптируя их под изменяющиеся потребности общества. Инженеры руководят и в некоторых случаях участвуют в производстве объектов, процессов или систем. Объекты и системы проектируются инженерами таким образом, чтобы они были легки в производстве и надежны. Для того чтобы приносить пользу обществу, технические объекты и системы должны применяться. Потребительские товары (такие как кухонные печи, машины или ноутбуки) используются обычными людьми. Более сложными системами (например, промышленными печами, самолетами или коммуникационными сетями) управляют профессионалы. Инженеры должны учитывать и планировать применение объекта, процесса или системы уже на этапе проектирования.
Для успешного планирования, проектирования, производства и применения объектов, процессов и систем инженеры работают в команде, что требует коммуникативных навыков. Они творчески и критически подходят к решению задач, действуют ответственно и обладают целым рядом других универсальных и профессиональных компетенций.
Задача высшей школы — подготовка выпускников к успешной инженерной деятельности, т.е. формирование у выпускников способности участвовать и со временем руководить всеми этапами планирования, проектирования, производства и применения объектов, процессов, систем и управления проектами. Для этого студенты должны обладать теоретическими и практическими знаниями, понимать ответственность перед обществом и иметь склонность к инновациям. Такие компетенции необходимы для повышения уровня производительности, предпринимательства и лидерства в условиях возрастающей технологической сложности объектов и систем. Во всем мире признается, что студентов технических вузов необходимо лучше готовить к будущей профессиональной инженерной деятельности, что возможно только при условии системного реформирования инженерного образования.
Сегодня в высшей инженерной школе существует две, на первый взгляд, непримиримые точки зрения. С одной стороны, студенты должны освоить постоянно увеличивающийся объем знаний. С другой стороны, возрастает понимание того, что для создания реальных объектов, процессов и систем инженеры должны представлять их производство, обладать широким набором личностных и межличностным компетенций, а также уметь работать в команде.
Это противоречие отражает очевидное расхождение во взглядах между преподавателями вузов и представителями профессионального инженерного сообщества, являющимися в итоге работодателями выпускников технических вузов. Академическая общественность традиционно подчеркивает важность наличия глубоких технических знаний. Однако с конца 1970-х — начала 1980-х годов, а затем более активно в 1990-х годах представители промышленности стали выражать озабоченность этим противоречием, обращая внимание на необходимость широкого видения перспективы, акцентирующей внимание на личностных и межличностных качествах, а также навыках создания объектов, процессов и систем.
В это время между работодателями, правительством и вузами возник диалог, целью которого стало усовершенствование инженерного образования. В ходе совместной работы были проанализированы компетенции выпускников инженерных программ и сформулированы перечни требуемых характеристик современного инженера. В обоих списках прослеживалась неявная критика инженерного образования в отношении излишней теоретизации обучения, в частности, математике, естественным и техническим наукам и недостаточности подготовки к реальной практике, требующей навыков проектирования, работы в команде и коммуникации.
Такая критика выявила напряженность в решении главных задач современного инженерного образования: подготовить специалистов в определенных технических областях, что предполагает овладение увеличивающимся объемом профессиональных знаний, и одновременно сформировать у выпускников универсальные личностные и межличностные компетенции и навыки создания объектов, процессов и систем.
Во многих странах мира имеются программы, демонстрирующие эту напряженность как результат эволюции инженерного образования за последние 50 лет. Практико-ориентированные инженерные программы превратились в научно-ориентированные программы, имеющие целью дать студентам прочную научную основу для решения перспективных инженерных задач. Следствием такой смены парадигмы стало изменение общей концепции инженерного образования и снижение ценности ключевых навыков и умений, ранее являвшихся отличительной чертой инженерных программ. Таким образом, возникло противоречие между теорией и практикой.
Впервые реакция на сложившуюся ситуацию прозвучала в отчете сэра Монти Финнистона правительству Великобритании в 1978 г., известном как «отчет Финнистона» [3]. Несколькими годами позже, в 1984 г., изобретатель аналого-цифрового преобразователя, обладатель Национальной медали США в области технологий Бернард Гордон, являющийся также основателем премии Гордона в области инженерного образования, присуждаемой Национальной инженерной академией США, прямо заявил, что «мировое сообщество… не вполне удовлетворено текущим положением дел в общем [инженерном] образовании» [4]. Ниже приведена выдержка из его обращения к членам ежегодной конференции Европейского общества инженерного образования SEFI (пример 1.1). Двадцать пять лет спустя оно не утратило своей актуальности.
Очевидно, что мировое сообщество в целом и западный мир в частности не вполне удовлетворены текущим положением дел в образовании. Такое недовольство оборачивается шквалом критики в адрес выпускников вузов, которые не умеют читать, писать и не справляются с вычислениями средней степени сложности. Вопрос «Почему Джонни не умеет читать?», получивший широкую огласку, ярко демонстрирует обеспокоенность общества.
Теперь все чаще задают и другой вопрос: «Почему Мистер Инженер не умеет проектировать и создавать?», поскольку руководители компаний и широкая общественность разочарованы недостаточным качеством производимых товаров. Критики инженерного образования любят цитировать жалобы на «продукцию» системы образования:
•непропорционально низкая и постоянно уменьшающаяся экономическая отдача от инженерных кадров;
•ограниченное и формальное обучение, низкая осведомленность в базовых технических областях;
•недостаточная подготовка для формирования инженерных навыков на необходимом уровне;
•недостаточное понимание важности точных испытаний и измерений;
•низкий дух состязательности и настойчивости;
•низкий уровень владения коммуникативными навыками;
•недостаточная дисциплинированность на рабочем месте;
•страх перед личной ответственностью.
В связи с этим необходимо провести переоценку нашего понимания инженерной деятельности, сконцентрировав внимание на содержательной составляющей с тем, чтобы определить, чем, с нашей точки зрения, должны заниматься инженеры в своей профессиональной деятельности, и внедрить новые технологии в методику образования.
Я предлагаю считать НАСТОЯЩИМ (т.е. ПРОФЕССИОНАЛЬНЫМ) ИНЖЕНЕРОМ того, ктообрел и постоянно совершенствует знания, навыки и личностные качества в области техники и технологий, коммуникации и человеческих взаимоотношений и кто приносит пользу обществу, теоретически обосновывая, планируя, проектируя и производя надежные инженерные конструкции и машины, имеющие практическую и экономическую значимость.
Чем шире знания, чем разнообразнее и лучше сформированы навыки и чем выше понимание у каждого инженера, тем значимее будут достижения, что, в свою очередь, принесет ему признание в качестве ролевой модели, учителя и лидера.
Для настоящего инженера знания не ограничиваются полученной и тем более технической информацией. Процесс познания отличается от процесса приобретения. Поскольку современный инженер может использовать информационные технологии, чтобы мгновенно получить любые существующие в мире данные, настоящий инженер имеет общее представление о необходимых данных и умеет восстанавливать в памяти и обрабатывать необходимые данные для синтезирования новой информации с целью решения поставленной задачи.
Принимая во внимание роль инженера как лидера общества, область необходимого знания не должна ограничиваться естественно-научными и техническими дисциплинами. Понимание процессов развития общества через изучение истории, экономики, социологии, психологии, литературы и искусства усиливает значимость инженерного решения. Кроме того, в эпоху «сближения миров» в результате развития коммуникационных технологий нельзя забывать об изучении иностранных языков — аспекте, который часто игнорируется на западном побережье Атлантики.
Навыки настоящего инженера, по сути, сводятся к владению технологиями решения задач проектирования, в которых консолидированные технические и естественно-научные знания применяются с использованием личного творческого потенциала и умений принимать решения, сформированных через обучение и практический опыт. Поскольку инженерные успехи достигаются в командной среде, для лидера и исполнителя крайне важны коммуникативные навыки.
Эти навыки могут быть сформированы только путем моделирования решений задач или через реализацию реальных проектов под руководством профессиональных инженеров. Однако следует иметь в виду, что никакое количество проанализированных примеров не сможет заменить реальной практики, в частности, по выполнению проекта. Метод кейсов может быть полезным, но его недостаточно для подготовки квалифицированного инженера.
Личностные качества настоящего инженера напрямую влияют на качество принимаемых им решений, независимо от задачи. Настоящий инженер руководит различными ресурсами (финансовыми, человеческими, материальными) на всех уровнях инженерной деятельности. Успешному руководителю необходима доля самокритики, при которой сбалансированно сосуществуют эгоизм и альтруизм. Для этого инженер должен иметь такие качества, как любознательность и смелость, реализующиеся в творчестве и инновациях. Успешный руководитель обладает силой, позволяющей отдавать и принимать приказы и стойко реагировать на вызовы рынка, неуклонно стремясь к успеху. Настоящий лидер демонстрирует преданность как своей команде, так и компании и заслуживает уважения членов проектной группы за личную компетентность, терпение и чуткое руководство.
Б.М. ГОРДОН, КОРПОРАЦИЯANALOGIC
К 1990-м годам критика университетского инженерного образования распространилась по всем миру. Компания Boeing, например, пыталась повлиять на качество инженерного образования, сформировав перечень требуемых характеристик инженера, представленный в примере 1.2. В более широком контексте промышленники развитых стран мира отреагировали семинарами и курсами по усовершенствованию образовательных программ и оказанием влияния на аккредитующие и профессиональные организации. Они также напрямую или косвенно через фонды финансировали образовательные инициативы и требовали, чтобы правительство выделило ресурсы для проведения реформ. Такая реакция не была случайной. Кампания развернулась против того, что промышленность считала главной кадровой угрозой, исходящей из университетов. Эти и другие комментарии промышленников объединяет принижение значимости фундаментальных технических и естественно-научных знаний и перечисление широкого спектра навыков, которые обычно включают элементы планирования, коммуникацию, командную работу, этику и другие личностные навыки и характеристики.
•Хорошее понимание основ инженерных наук:
— математики (включая статистику);
— физики и биологии;
— информационных технологий (значительно выше уровня компьютерной грамотности).
•Хорошее понимание процессов проектирования и производства.
•Междисциплинарный системный подход.
•Базовое понимание контекста инженерной практики:
— экономики (включая практику деловых отношений);
— истории;
— окружающей среды;
— потребностей клиентов и общества.
•Хорошие коммуникативные навыки:
— письменной и устной речи, составления графиков, аудирования.
•Высокие этические нормы.
•Способность к критическому и творческому мышлению (самостоятельному и в команде).
•Гибкость, т.е. способность уверенно адаптироваться к быстрым или значительным переменам.
•Любознательность и желание обучаться в течение всей жизни.
•Глубокое понимание значимости командной работы.
КОМПАНИЯBOEING
Многие слышали, анализировали и применяли на практике столь же ясно сформулированные требования промышленных компаний. Однако задача повышения качества образования, поставленная работодателями и подхваченная правительствами, остается актуальной. Помимо этого, сохраняется потребность в увеличении количества выпускников инженерных программ. Мы стремимся повысить качество подготовки студентов технических вузов через проведение системной реформы инженерного образования, основанной на применении подхода CDIO к проектированию образовательных программ.
ОСНОВЫ ПОДХОДАCDIO
ПодходCDIOнаправлен на подготовку всесторонне образованных инженеров, способных планировать, проектировать, производить и применять сложные инженерные объекты, системы и процессы с высокой добавленной стоимостью в современных условиях командной работы. Подход направлен на достижение трех общих целей — подготовить выпускников, способных:
•применять базовые технические знания в практической деятельности;
•руководить процессом создания и эксплуатации инженерных объектов, процессов и систем;
•понимать важность и последствия воздействия научного и технического прогресса на общество.
Образование, организованное с применением подхода CDIO, основано на формировании базовых технических знаний в контексте планирования, проектирования, производства и применения объектов, процессов и систем. Мы стремимся разработать эффективные образовательные программы, интересные студентам и способные привлечь их в инженерное образование, удержать их на программе и в профессии.
Планирование, проектирование, производство и применение должны рассматриваться как контекст, а не как содержание инженерного образования. Образовательный контекст — это среда, способствующая пониманию и приобретению знаний и умений. Выбор планирования, проектирования, производства и применения в качестве образовательного контекста соответствует профессиональной деятельности инженера и формирует естественную среду для приобретения основных инженерных навыков. В рамках заданного контекста мы создали комплексный подход к определению образовательных потребностей студентов и разработали последовательность учебных мероприятий, направленных на их удовлетворение.
Важная особенность подхода CDIO заключается в том, что он позволяет создать образовательный контекст, который оказывает двойное воздействие на студентов тем, что способствует глубокому пониманию теоретических основ инжиниринга и приобретению практических навыков. Благодаря применению современных педагогических подходов и инновационных методик преподавания создается новая образовательная среда, в которой студенты приобретают конкретный опыт обучения, способствующий осмыслению абстрактных технических понятий и активному применению полученных знаний, что приводит к их пониманию и усвоению. Следовательно, подход CDIO обеспечивает глубокое практическое понимание базовых инженерных знаний. Конкретный опыт обучения также стимулирует формирование личностных и межличностных компетенций и навыков создания объектов, процессов и систем.
Чтобы гарантировать достижение поставленных целей, подход CDIO разрабатывался как технологический процесс. Нами была создана комплексная технология определения образовательных потребностей и выработана последовательность учебных мероприятий, направленных на их удовлетворение. Технология и учебные мероприятия легли в основу перечня планируемых результатов обучения, называемого CDIOSyllabus, и стандартов CDIO (CDIOStandards).
Конкретные результаты обучения представляются в виде рационального, последовательного и подробного перечня компетенций, необходимых для инженера. Перечень планируемых результатов обучения сформирован по результатам анализа потребностей и исходных документов и прошел экспертную оценку. Квалификационные требования к выпускникам определялись при участии разных потребителей инженерных программ. Сформулированные таким образом результаты обучения служат основой для определения целей, бенчмаркинга, проектирования образовательных программ и оценивания достижений студентов.
Стандарты CDIO — это попытка объединить опыт успешных практик в инженерном образовании, выявленных путем сравнительного анализа различных программ по всему миру. Стандарт 1 CDIO устанавливает основной принцип, согласно которому планирование, проектирование, производство и применение рассматриваются как контекст инженерного образования. Стандарт 2 CDIO подчеркивает, что для каждой программы необходимо сформировать широкий перечень результатов обучения с участием потребителей программы. Учебный план программы должен включать взаимосвязанные дисциплины, где обучение предполагает овладение личностными и межличностными компетенциями, а также навыками создания объектов, процессов и систем. Одной из первых дисциплин в программе должен быть курс «Введение в инженерную деятельность», создающий представление об инженерной практике. Помимо этого, программа должна включать несколько учебно-практических заданий по проектированию и созданию технических объектов, выполняемых в современных учебных классах. Учебное пространство должно способствовать практическому обучению, а формирование навыков быть интегрировано в освоение дисциплинарных знаний. Преподаватели должны иметь достаточную педагогическую компетенцию и квалификацию в инженерных областях, а образовательные программы CDIO — постоянно совершенствоваться через оценку достижений студентов по всем результатам обучения, а также через применение системы оценки качества. Таким образом, в 12 стандартах CDIO определены требования к образовательным программам, которые могут выступать руководством для реформирования и оценки программ, создавать условия для бенчмаркинга и задавать цели в международном контексте, служить отправной точкой для непрерывного улучшения.
Подход CDIO возник и получил развитие благодаря сотрудничеству Массачусетского технологического института (США) с тремя шведскими университетами — Технологическим университетом Чалмерса, Королевским технологическим институтом и Университетом Линчёпинга. На сегодняшний день более 100 университетов мира используют подход CDIO для разработки инженерных программ.
При создании нового подхода мало что было придумано. В своей работе мы основывались на исследованиях и лучших практиках университетов-партнеров и многих других вузов по всему миру, стремящихся повысить качество инженерного образования. Многие из них внесли важный вклад в развитие проекта. Основной принцип CDIO, например, — определение результатов обучения и использование проблемно- и проектно-ориентированного обучения как неотъемлемых этапов реализации подхода, применимого при проектировании и внедрении образовательной программы. Подход CDIO развивает и систематизирует перспективные идеи с тем, чтобы сформировать набор универсальных методов для широкого применения и разработать открытые ресурсы, которые могут выступать руководством для реформирования инженерного образования. Мы понимаем, что в большинстве случаев университеты не располагают значительными финансовыми и кадровыми ресурсами, и призываем к использованию общедоступных открытых источников, позволяющих внедрить систему непрерывного совершенствования.
Подход CDIO не является нормативом и должен быть адаптирован с учетом специфики конкретной программы — ее целей, национального, общеуниверситетского и дисциплинарного контекста. Подход CDIO легко совмещается с другими реформами высшего образования. Однако в отличие от стандартов национальных аккредитующих организаций, устанавливающих цели, мы предлагаем несколько возможных решений комплексной задачи по реформированию инженерного образования. Многие университеты мира развиваются параллельно нашему проекту и вносят существенный вклад в общее дело. Другие уже провели собственные независимые реформы согласно 12 стандартам CDIO. Но мы всегда можем становиться лучше, устранять свои недостатки, помогать другим в том, в чем сами являемся лидерами, и предвосхищать постоянно меняющиеся потребности студентов и общества.
Лежащая перед вами книга писалась как введение к подходуCDIO. Это практическое руководство, содержащее достаточное количество информации, чтобы познакомить вас с его высокими целями, философией и основными идеями, объяснить исторические и социальные предпосылки. На страницах книги вы найдете ссылки на более подробные ресурсы в виде других книг, материалов семинаров и веб-сайтов.
Общий обзор подхода CDIO продолжится в главе 2. В ней будут подробно описаны причины возникновения подхода, его цели, задачи, педагогические принципы и основные этапы применения. Глава 3 посвящена описанию процессов определения необходимых компетенций инженера и формулирования результатов обучения выпускников инженерных программ. В главах 4–6 более подробно рассмотрены учебный план, рабочее пространство студента и подходы к обучению. Методы оценивания достижений студентов, определения качества программы и система постоянного совершенствования обсуждаются в главах 7–9. Авторы книги также обращаются к истории, чтобы проиллюстрировать необходимость реформы в инженерном образовании и обосновать свое видение его будущего.
1.Von Kármán T.Dictionary of Scientific Quotations/ed. by A.L. Mackay.L.: CRC Press, 1994.
2. The Royal Charter. The Institution of Civil Engineers. L., 1828. <http://www.ice.org.uk>. Accessed November 11, 2013.
3.Finiston M.Engineering Our Future: Report of the Committee of Inquiry into the Engineering Profession.L.: HMSO CMND 7794, 1980.
4.Gordon B.M.What is an Engineer? Invited Keynote Presentation, European Society for Engineering Education (SEFI) Annual Conference. Germany:UniversityofErlangen–Nürnberg, 1984.
Задача инженерного образования — подготовка выпускников, которые «умеют проектировать и создавать», т.е. обладают инженерными навыками и глубокими знаниями технических основ. Для достижения поставленной цели разработчики и руководители образовательных программ должны непрерывно повышать качество инженерных программ уровня бакалавриата. За последние 30 лет со стороны промышленности и правительства предпринимались неоднократные попытки описать необходимые результаты в терминах атрибутов выпускников инженерных программ. Проанализировав различные мнения, нам удалось сформулировать основную задачу инженерных вузов какподготовку выпускников к планированию, проектированию, производству и применению комплексных инженерных объектов, процессов и систем с высокой добавленной стоимостью в современных условиях командной работы.
Подход CDIO предлагает путь, следуя которому инженерное образование сможет обеспечить решение основной задачи. Подход базируется на трех предпосылках, отражающих его цели, видение и педагогические принципы.
•Для решения основной задачи необходимо акцентировать внимание на формировании базовых технических знаний, рассматривая процесс планирования, проектирования, производства и применения объектов, процессов и систем как контекст инженерного образования.
•Результаты обучения студентов должны быть сформулированы при непосредственном участии заинтересованных сторон и достигаться путем последовательной реализации комплекса учебных мероприятий, имеющих практический характер (т.е. способных погружать студентов в ситуации, с которыми сталкиваются инженеры в своей профессиональной деятельности).
•При правильном подходе к разработке комплекса учебных мероприятий они будут оказывать двойное действие, формируя у студентов необходимые личностные и межличностные компетенции, а также навыки создания объектов, процессов и систем, одновременно стимулируя освоение технических знаний.
В главе 2 подробно обсуждаются главные особенности подхода CDIO, начиная с анализа целей, задач, видения и педагогических принципов, ранее упомянутых в главе 1. Структура первого раздела главы 2 во многом определяет организацию других глав книги. Второй раздел главы 2 посвящен основному принципу похода CDIO, заключающемуся в рассмотрении планирования, проектирования, производства и применения как контекста инженерного образования. В третьем разделе описываются методы адаптации и реализации подхода CDIO при разработке инженерной программы и подчеркивается необходимость рассмотрения образовательной реформы как процесса организационных изменений в университете.
•представление основной цели, задачи и видения проблемы и педагогических принципов подходаCDIO;
•анализ контекста инженерного образования;
•ознакомление с перечнем результатов обученияCDIOи стандартамиCDIO;
•описание механизма применения подходаCDIO.
ПодходCDIO— один из путей реформирования современного инженерного образования. В его основе лежит несколько ключевых идей, касающихся прежде всего обоснования необходимости реформирования и постановки целей инженерного образования. Центральная идея подхода — видение проблемы и рассмотрение жизненного цикла инженерного процесса как контекста инженерного образования. Реализации подхода способствуют особые педагогические принципы. Более подробно эти ключевые идеи описаны в разделе «ПодходCDIO».
Работа над созданием подходаCDIOначалась с анализа мнений представителей промышленности о целях подготовки студентов инженерных программ, сформулированных, как правило, в виде списков необходимых атрибутов профессиональных инженеров, включающих предметные знания, соблюдение правил этики, умение эффективно общаться и т.д. Как правило, эти списки отражают лишь потребности компаний и не предлагают анализа ситуации, в связи с чем не приводят к желаемому эффекту. Попытавшись объединить подобные «списки», мы пришли к выводу, что они формировались в первую очередь исходя из базовой и рациональной потребности общества в инженерах.
Таким образом, отправной точкой нашей работы стало формулирование основной задачи инженерного образования. Мы считаем, что выпускник технического вуза должен уметь
планировать, проектировать, производить и применять комплексные инженерные объекты, процессы и системы с добавленной стоимостью в современных условиях командной работы.
Другими словами, мы должны готовить инженеров, которые способны проектировать и создавать. Выпускники инженерных программ должны решать инженерные задачи и участвовать в принятии инженерных решений при работе в инженерных организациях, а также быть ответственными и разумными членами общества. Планирование, проектирование, производство и применение — это модель жизненного цикла объектов, процессов и систем. От нее возникло название подхода — CDIO:Conceive,Design,ImplementandOperate (планировать, проектировать, производить и применять). CDIO — не единственная существующая подобная модель, но она транслирует общую идею участия инженера во всех этапах жизненного цикла продукции. Под объектами, процессами и системами подразумевается множество решений и результатов работы инженера. Добавленная стоимость понимается нами как дополнительная стоимость, созданная на определенном этапе разработки или производства. Современная командная среда дает возможность выполнения функций инженера в междисциплинарной и международной организации с применением современных технологий. Сформулировав ключевую задачу на основе модели «планирование—проектирование—производство—применение», сформулируем конкретные цели образования.
ПоходCDIOнаправлен на достижение трех общих целей — подготовить выпускников, способных:
1) применять базовые инженерные знания в практической деятельности;
2) руководить процессом создания и эксплуатации технических объектов, процессов и систем;
3) понимать важность и последствия воздействия научного и технического прогресса на общество.
Рассмотрим цели образования, определенные с позиции подхода CDIO, более детально.
Цель 1. Инженерное образование должно быть акцентировано на овладении знаниями технических основ, так как университеты закладывают базу для дальнейшего обучения. Разработанный нами подход ничем не преуменьшает значимость технических основ или потребность студентов в их освоении. Мы лишь подчеркиваем важность практических знаний и концептуальное понимание предметной области. При этом концептуальное понимание — это способность применять знания в разных рабочих ситуациях и условиях [1]. Это не запоминание фактов и определений и не просто применение концептуальных принципов (например, первого закона термодинамики). Концептуальное понимание скорее относится к идеям, имеющим непреходящую ценность. Оно открывает возможности для вовлечения студентов в процесс обучения. В традиционном обучении часто практикуется принцип передачи знаний, при котором студенты осваивают знания, пассивно прослушивая лекции. Подход CDIO ставит целью вовлечение студентов в создание собственного знания и разоблачение своих заблуждений. Переход от устоявшегося принципа передачи знаний к концептуально новому подходу в преподавании трудноосуществим. Мартон и Сэльё назвали обучение по принципу передачи знаний «поверхностным подходом» и противопоставили его более глубокому подходу [2]. В табл. 2.1 представлены адаптированные материалы семинара Мартона и Сэльё, разработанные на основе работ Гиббса [3, 5] и Рэма [4]. Таким образом, подход CDIO, формулирующий цель образования как подготовку студентов, способных освоить глубокое практическое знание технических основ, призван изменить сложившуюся практику преподавания и уйти от обучения по принципу передачи знаний. Этому вопросу посвящена глава 6.
Цель 2. Университеты должны готовить студентов, способных руководить созданием и применением технических объектов, процессов и систем. Таким образом, признается необходимость подготовки студентов к будущей профессиональной деятельности. Потребность создавать и применять новые технические объекты, процессы и системы диктует необходимость формирования личностных и межличностных навыков и умений создавать объекты, процессы и системы. Личностные навыки и качества подразумевают такой образ мышления, как, например, аналитическое рассуждение и решение задач, проведение экспериментов, системное, критическое и творческое мышление. Личностные качества и их атрибуты включают целостность, ответственность, любознательность и желание принимать решения в условиях неопределенности. К межличностным навыкам относятся взаимодействие с другими людьми и работа в команде. Знания и умения, относящиеся к созданию объектов, процессов и систем, включают планирование, проектирование, производство и применение объектов, процессов и систем с учетом требований предприятия, общества и окружающей среды. Более подробно результаты обучения, вытекающие из цели 2, обсуждаются в главе 2 и являются центральной идеей главы 3.
Цель 3. Университеты должны готовить студентов, способных понимать значение и влияние научных и технологических открытий на стратегию развития общества. В решении проблем общество во многом опирается на деятельность ученых и инженеров. Однако необходимо помнить, что научные и технологические открытия неотделимы от социальной ответственности и должны развиваться в направлении технологий устойчивого развития. Выпускники инженерных программ должны ясно осознавать роль науки и технологий в развитии общества, чтобы принять эту ответственность. Цель 3 также учитывает, что часть выпускников не станут профессиональными инженерами и продолжат деятельность в качестве исследователей в промышленных, правительственных и образовательных организациях. Несмотря на различия в интересах, обучение в контексте развития объектов, процессов и систем будет полезно всем студентам. Во-первых, они извлекут выгоду из углубленного изучения технических основ, на которое указывает цель 1. Во-вторых, исследователи должны понимать взаимосвязь между их работой и ее влиянием на конечный объект или систему. Успешные исследователи все чаще получают признание не только за сделанные открытия, но и за вклад в развитие общества. Таким образом, студентам, стремящимся стать учеными и исследователями, необходимо понимать, как технология реализуется в объектах и процессах, и уметь оценить и повысить практическую значимость своей работы.
Цели 1 и 2 отражают противоречие, сложившееся в инженерном образовании между необходимостью формирования знаний дисциплинарных основ и инженерных навыков. Многие преподаватели высшей школы соглашаются, что обе цели важны, но расходятся в понимании того, сколько времени необходимо посвятить обучению каждой составляющей. Напряженность в отношениях между необходимостью формирования знаний дисциплинарных основ и инженерных навыков возрастает, если обучение строится по модели передачи знаний с фиксированным максимальным уровнем эффективности передачи и фиксированной продолжительностью обучения. В основе подхода CDIO лежит альтернативный взгляд на образование, позволяющий разрешить сложившееся противоречие. Мы считаем, что освоение дисциплинарных основ может быть усилено в условиях формирования личностных и межличностных компетенций, а также навыков создания объектов, процессов и систем.
Чтобы разрешить ситуацию, нами был выработан системный взгляд на инженерные программы. ПодходCDIOпредусматривает овладение базовыми техническими знаниями в контексте планирования, проектирования, производства и применения объектов, процессов и систем. Исходя из этого, мы сформулировали следующие постулаты.
•Обучение должно строиться вокруг четко сформулированных целей образовательной программы и результатов обучения студентов, определенных при участии заинтересованных сторон.
•Учебный план программы должен включать взаимосвязанные дисциплины, где обучение предполагает овладение личностными и межличностными компетенциями, а также навыками создания объектов, процессов и систем.
•Учебные мероприятия должны включать практические занятия по разработке и применению объектов и систем в образовательной среде, составляющие основу экспериментального-практического инженерного обучения.
•Помимо практических занятий по разработке и применению объектов и систем, активное и практическое обучение должно быть частью лекционных курсов.
•Система оценивания должна быть комплексной.
Обучение, организованное в соответствии с перечисленными постулатами, будет оказывать двойное воздействие на студентов тем, что способствует глубокому освоению базовых технических знаний и приобретению практических инженерных навыков. Студенты будут обучаться через ряд комплексных учебных мероприятий, часть из них будет носить практический характер, т.е. погружать студентов в ситуации, с которыми сталкиваются инженеры в своей профессиональной деятельности. При правильном подходе к разработке комплексных учебных мероприятий они будут оказывать двойное действие, формируя у студентов необходимые личностные и межличностные компетенции, а также навыки создания объектов, процессов и систем, одновременно стимулируя освоение базовых знаний. В следующих разделах мы подробно остановимся на семи компонентах образовательных программ: контексте, предметных знаниях (основах), результатах обучения, учебном плане, практическом обучении, активном обучении и оценивании.
Планирование, проектирование, производство и применение как контекст инженерного образования. Авторы уверены, что модель «планирование—проектирование—производство—применение» должна служить контекстом инженерного образования. При этом образовательный контекст понимается как среда, способствующая обучению. Иными словами, культура обучения, приобретаемые навыки и формируемые личностные компетенции должны способствовать пониманию того, что роль инженера в обществе — это планирование, проектирование, производство и применение продуктов инженерной деятельности.
Выбор планирования, проектирования, производства и применения в качестве образовательного контекста обусловлен рядом важных причин. Во-первых, это естественный контекст, т.е. он соответствует профессиональной деятельности инженера. Во-вторых, в естественной среде CDIO легко сформировать необходимые инженерные навыки. И в-третьих, данный контекст способствует не только приобретению навыков, но и освоению базовых технических знаний. Применение модели «планирование—проектирование—производство—применение» либо другой модели жизненного цикла инженерной продукции в качестве контекста инженерного образования настолько важно, что стало первым из 12 стандартов CDIO. Этот основополагающий принцип более подробно обсуждается во второй части главы 2.
Необходимо отметить, что жизненный цикл объекта или системы — это контекст, а не содержание инженерного образования. Это означает, что не каждому инженеру необходимо быть специалистом по разработке. Инженер может иметь предметные знания в машиностроении, электроэнергетике или химии, однако эти знания должны быть приобретены в контексте, обеспечивающем освоение навыков и умений, необходимых для проектирования и применения объектов.
Вывод о том, что планирование, проектирование, производство и применение должны стать естественным контекстом инженерного образования, настолько очевиден, что невольно напрашивается вопрос: почему эта модель не является таким контекстом повсеместно уже сегодня? Ответ в том, что в инженерных вузах работают, как правило, не инженеры-практики, а инженеры-исследователи. Они производят новое инженерное знание, следуя редукционистскому подходу, поскольку благодаря ему значительно вознаграждаются усилия отдельных лиц. В инженерной практике, напротив, применяется системный подход для производства инженерных объектов, процессов и систем, при котором важна работа команды. Тем не менее необходимо подчеркнуть, что практический контекст используется для глубокого освоения базовых инженерных знаний. Таким образом, необходимо понимать, что изменение контекста образования основывается на изменении общей культуры образования.
Можно возразить, что такие перемены невозможны в условиях университета. По сути, сложившаяся на текущий момент напряженная ситуация в инженерном образовании многих стран является именно результатом такой трансформации. До 1950-х годов, а в ряде стран и позже, преподавателями вузов были практикующие инженеры. Образование было сугубо практическим. В 1950-х годах началась техническая революция, благодаря которой в университеты пришли молодые ученые, а 1960-е годы XX столетия можно назвать «золотым веком» инженерного образования. Студентов одновременно обучали преподаватели старой практико-ориентированной школы и молодые инженеры-ученые. Однако к 1970-м годам представители старшего поколения вышли на пенсию и их повсеместно заменили ученые-теоретики. Иными словами, культура и контекст инженерного образования коренным образом изменились и стали научно-ориентированными.
Главное внимание — освоению основ. Целью изменения общей парадигмы инженерного образования было стремление дать студентам теоретические основания для решения неизвестных технических задач в будущем. Ни в коем случае не преуменьшая значимости перехода инженерного образования от практики к науке и признавая огромный вклад научных изысканий, поведенных за последние полвека, необходимо отметить, что следствием такой трансформации стало изменение культуры инженерного образования. Понимание ценности важнейших практических навыков и умений, формирование которых являлось ранее отличительным признаком инженерного образования, резко снизилось. Не случайно в 1980-х годах многие развитые страны мира стали отмечать изменение качества знаний и недостаточное владение навыками и умениями у выпускников инженерных программ. Когда обеспокоенность, выраженная промышленными компаниями в 1980-х годах, не возымела никакого действия, реакция промышленников в 1990-х стала более заметной, о чем уже упоминалось ранее.
Эволюцию состава преподавателей инженерных программ можно проследить и по соотношению учебных мероприятий, направленных на обучение техническим основам и формирование личностных, межличностных и процессуальных навыков, а также навыков создания объектов и систем. Такая эволюция схематично представлена на рис. 2.1. До 1950-х годов инженерное образование носило преимущественно практический характер, к 1960-м годам XX века между двумя аспектами установился определенный баланс, а к 1980-м годам укоренилась новая модель обучения, акцентирующая внимание на освоении базовых технических знаний. Данная тенденция представлена в виде компромиссной кривой, поскольку, в связи с тем что обучение является технологией передачи информации, наличие ограничений в производительности и времени позволяет передать лишь ограниченный объем знаний. Если следовать этой модели обучения, возникает естественный вопрос: что следует убрать из программы, чтобы найти место формированию практических навыков? Мы считаем, что существуют альтернативные модели обучения, отличные от модели передачи информации, которые позволяют избежать очевидного конфликта. Подход CDIO — это попытка создать такое образование, которое позволит осваивать постоянно увеличивающийся объем предметных знаний и одновременно приобретать универсальные навыки, необходимые для успешной инженерной деятельности.
Результаты обучения. Первой конкретной задачей на пути создания модели образовательной программы с применением нового подхода стала разработка и систематизация атрибутов, необходимых современному инженеру. Для решения этой задачи были созданы рабочие группы из преподавателей инженерных программ, студентов и представителей промышленности с целью найти ответ на вопрос: каким набором знаний, практических навыков и характеристик должны обладать выпускники инженерных вузов? Приведем пример содержательного ответа, полученного от участника одной из рабочих групп Рэя Леопольда, бывшего вице-президента и главного технолога подразделения по глобальным телекоммуникационным решениям (GlobalTelecomSolutionsSector) компании Motorola (пример 2.1). По результатам деятельности рабочих групп и с учетом предложений представителей промышленности, государственных структур и вузов требования к выпускникам университетов были представлены в виде перечня результатов обучения, известного как CDIOSyllabus. Описание и обоснование перечня результатов обучения изложены в главе 3.
По моим оценкам, наиболее важное качество потенциальных выпускников программCDIO— это способность применять инженерные навыки при наличии ответственного понимания соответствия выполненной работы реальным потребностям общества. Для этого необходима успешная реализация проектов (в широком смысле) с участием инженеров и представителей других профессий. Инженер должен быть способен находить не только технические, но и потенциально успешные экономические решения, уметь оценить стоимость проекта. Выпускник инженерного вуза должен уметь не только генерировать гениальные идеи, но и применять их на практике.
Как часть этого процесса, выпускники инженерных программ должны иметь более полное представление о прибыли, которую они приносят своей организации. Им необходимы развитые личностные компетенции, способность работать в команде с другими инженерами и специалистами из других областей. Профессионализм инженера основан не только на широте и глубине предметных знаний, но и на собственном опыте применения личностных и профессиональных компетенций.
В своих компаниях мы обычно стремимся определить, чтó человек знает, какой вклад он может внести в общее дело, каковы перспективы компании от сотрудничества с ним и насколько человек соответствует корпоративному духу. Часто мы отказываем в работе высококвалифицированным специалистам, которые не могут продемонстрировать личностные качества, необходимые для работы в нашей команде, или чей возможный рост ограничен узкой технической областью. Нам необходимы глубокие технические знания, но они должны находиться в контексте. И нам также необходима способность работать в команде. Во время интервью я часто задаю вопросы, позволяющие понять характер человека, например: «Опишите случай, когда в период учебы вам приходилось:
•решать задачу с коллегой, который не был заинтересован в общем результате;
•повторно оценивать предложенный проект;
•перестраивать свой рабочий график, чтобы уложиться в сроки».
Выпускник программыCDIOдолжен уметь уверенно отвечать на такие вопросы, а его ответы должны не только иметь прямое отношение к заданному вопросу, но и демонстрировать более широкое понимание проблемы.
Р. ЛЕОПОЛЬД, КОРПОРАЦИЯMOTOROLA
Как видно из табл. 2.2, результаты обучения студентов были разделены в CDIOSyllabus на четыре группы.
Знания, навыки и личностные качества, вошедшие в категории 2–4, описаны как личностные и межличностные навыки, а также навыки создания объектов, процессов и систем. Первая группа «Дисциплинарные знания и понимание» характеризует содержание отдельных инженерных направлений подготовки. Группы 2–4 применимы к любым инженерным программам.
Результаты обучения каждой группы далее были декомпозированы на втором, третьем и четвертом уровнях детализации. Перечень тем для изучения в рамках отдельных дисциплин, приведенный на втором уровне, был согласован с экспертами в каждой предметной области (большинство согласований проводилось в отношении CDIOSyllabus 1.0, в котором отсутствовали пункты 4.7 и 4.8). Для обеспечения системности CDIOSyllabus был жестко привязан к документам, определяющим требования к инженерному образованию и необходимые атрибуты выпускников. Нашим стремлением было представить CDIOSyllabus в виде обоснованного и последовательного набора навыков, основанного на анализе требований заинтересованных сторон к выпускникам инженерных вузов. Более полный документ — CDIOSyllabus 2.0 — приведен в приложении.
CDIOSyllabus может быть использован при планировании результатов обучения лишь как рекомендация или модель. Для каждой образовательной программы необходим собственный перечень результатов обучения, который, возможно, будет сформирован путем адаптации содержания CDIOSyllabus. Результаты обучения студентов по каждой отдельной программе обязательно должны быть согласованы с основными потребителями программы. В инженерном образовании существует четыре основные категории потребителей или заинтересованных сторон: студенты, представители промышленности, преподаватели и общественные организации. Результаты обучения студентов по каждой программе должны отражать интересы всех четырех категорий ее потребителей. Промышленные компании как конечные потребители и работодатели выпускников обладают знаниями относительно необходимых атрибутов будущих выпускников, т.е. являются источником знаний о долгосрочных интересах студентов. Студенты — непосредственные потребители образовательных услуг и арбитры потребительских нужд. Преподаватели университетов обеспечивают передачу и формирование знаний, навыков и личностных качеств и обогащают программу своим видением потребностей студентов. Широкая общественность устанавливает требования к инженерному образованию (в том числе квалификационные требования) и акцентирует внимание на нуждах общества через национальные и аккредитационные стандарты. Таким образом, все четыре категории заинтересованных сторон обладают собственным важным мнением о целях инженерного образования. Для формулирования тем и навыков в терминах измеримых результатов обучения, составивших CDIOSyllabus, нами были предложены способы привлечения потребителей программы с целью определения необходимого квалификационного уровня по каждому разделу CDIOSyllabus. Описанию способов привлечения заинтересованных сторон посвящена глава 3.
Помимо этого, подход CDIO отвечает на вопрос, каким образом можно обеспечить формирование перечисленных навыков у студентов, и обосновывает необходимость радикального изменения структуры программы и содержания дисциплин, образовательной среды, методов обучения и методов оценивания достигнутых результатов.
Для достижения двойной цели (формирования глубокого практического знания технических основ и способности руководить процессом создания и эксплуатации новых объектов, процессов и систем) необходимо модернизировать учебный план инженерных программ. Мы не можем рассчитывать на продление срока обучения, увеличение продолжительности семестров, дополнительные ресурсы и другие изменения, касающиеся учебного плана. По этой причине необходимо научиться по-новому распоряжаться имеющимися ресурсами. Сложность состоит в том, чтобы разработатьинтегрированныйучебный план. Необходимо таким образом использовать учебное время, чтобы студенты осваивали глубокие практические знания технических основ, одновременно приобретая личностные и межличностные компетенции, а также навыки создания объектов, процессов и систем.
Мы не должны надеяться на случайность и обязаны разработать ясный план действий, обеспечивающий формирование необходимых навыков у студентов. Он может потребовать изменений в структуре учебного плана и включения в него дополнительных возможностей для обучения за пределами программы и университета. Вероятно, придется также разработать новые учебные материалы. В процессе реформирования образовательных программ в качестве организующей структуры учебного плана предлагается по-прежнему рассматривать отдельные дисциплины. Однако в учебный план необходимо внести два существенных изменения. Во-первых, дисциплины, составляющие учебный план, должны быть согласованы между собой и дополнять друг друга, как это происходит в реальной инженерной практике. Во-вторых, формирование личностных и межличностных компетенций, а также навыков создания объектов, процессов и систем должно стать неотъемлемой частью обучения.
Для разработки нового учебного плана необходимо провести анализ существующей ситуации с тем, чтобы определить наличие взаимосвязей между дисциплинами и условий для формирования навыков, а также выявить пробелы и повторы. Интегрированный учебный план должен включать три обязательных компонента.
•Курс «Введение в инженерную деятельность», создающий основу для последующего обучения, стимулирующий интерес и создающий мотивацию студентов к инженерной деятельности.
•Традиционные дисциплины, согласованные между собой и демонстрирующие необходимость междисциплинарного подхода.
•Финальный проект, позволяющий студентам продемонстрировать умение планировать, проектировать, производить и применять объекты, процессы или системы.
Только при наличии этих компонентов учебный план будет обеспечивать формирование необходимых навыков. Новый учебный план также должен включать выполнение других проектов, прохождение практик и стажировок на базе промышленных предприятий, что обеспечит дополнительное время для формирования навыков и обогатит опыт. В результате интегрированный учебный план будет состоять из последовательных хорошо спланированных учебных мероприятий, направленных на достижение студентами целей образовательной программы. Более подробно процесс разработки интегрированного учебного плана рассмотрен в главе 4.
Практическое обучение и образовательное пространство. Инженеры создают и производят объекты, процессы и системы. Включая в обучение регулярные практические занятия по разработке и применению объектов и систем, составляющие основу экспериментального-практического инженерного образования, мы помогаем студентам освоить базовые технические знания и приобрести навыки создания и производства новых систем. В связи с тем, что потребность в приобретении личностных и межличностных компетенций, а также навыков создания объектов, процессов и систем обусловлена необходимостью работы в команде, практические занятия и проекты создают естественную среду для формирования необходимых навыков. В программе CDIO практический опыт планирования, проектирования, производства и применения является неотъемлемой составляющей учебного плана и обязательно интегрируется во вводные курсы и финальные проекты. Финальный проект реализуется на стыке нескольких дисциплин и предполагает планирование, проектирование, производство или применение объекта, процесса или системы. Обучение теоретическим основам в контексте практического опыта обеспечивает понимание студентами прикладной значимости и ограничений теоретических знаний.
Для того чтобы обеспечить понимание студентами модели «планирование—проектирование—производство—применение» как контекста образования, желательно обновить материально-техническую базу и создать современное образовательное пространство, поддерживающее и организованное на основе данной модели. Так, образовательное пространство, созданное в контексте планирования, должно стимулировать студентов к взаимодействию и пониманию потребностей других людей, а также обеспечивать возможность для анализа и формирования общей концепции. Чаще всего такое пространство не имеет специального оборудования. Помещения, используемые для проектирования и производства, создают условия для приобретения опыта командного проектирования с использованием цифровых технологий, знакомства с современными средствами производства и применением аппаратного и программного обеспечения. Наиболее сложно организовать на базе университета среду для применения объектов, процессов и систем. Однако возможность обучить студентов применению собственных разработок и результатов учебных проектов обеспечивается средствами моделирования. Непосредственный опыт может быть дополнен моделированием реальных процессов и электронным доступом к производственным объектам. Кроме того, образовательное пространство должно обеспечивать и другие виды активного и практического обучения, такие как эксперимент, лабораторное исследование и социальное взаимодействие. Образовательная среда должна способствовать образованию студенческих команд и реализации совместных видов деятельности. Вопросам практического обучения и образовательного пространства посвящена глава 5.
Активное и практическое обучение. Рассмотрев содержание обучения, обратимся к вопросу методики преподавания. Для достижения двойной цели (формирования глубоких предметных знаний и развития навыков) необходимо перераспределить время, отведенное на освоение программы, и применить лучший опыт обучения ко всем мероприятиям программы. Определив образовательные потребности студентов, мы рекомендуем следующие изменения в подходах к обучению.
•Повышение доли активного и практического обучения.
•Внедрение комплексных учебных мероприятий, обеспечивающих освоение студентами дисциплинарных знаний и одновременное формирование необходимых личностных и межличностных компетенций, а также навыков создания объектов, процессов и систем.
