139,99 €
Inside industrial furnaces and combustion chambers, energy is essentially exchanged by radiation. It is through the same mechanism that the energy emitted by the Sun spreads through different media to reach the Earth. Developing a sound understanding of the laws underlying energy exchanges by radiation is therefore essential, not only for establishing design equations for industrial equipment, but also for an optimal harvesting of solar energy and a better understanding of climate change phenomena such as the greenhouse effect. Energy Transfers by Radiation establishes the basic laws and equations which support the quantification of energy fluxes transferred between surfaces for situations similar to those usually encountered in industrial processes or in solar energy applications.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 305
Veröffentlichungsjahr: 2019
Cover
Preface
Introduction
1 Origin of Radiation
1.1. Introduction
1.2. The Niels Bohr model
1.3. Nature of the radiating energy
2 Magnitudes Used in Radiation
2.1. Introduction
2.2. Monochromatic, total, directional and hemispherical magnitudes
2.3. Absorption, reflection and transmission
2.4. Total intensity of a source in one direction
2.5. Total luminance of a source in one direction
2.6. Illuminance of a receiving surface
2.7. Examples of monochromatic magnitudes and explanation of the greenhouse effect
2.8. Relations between magnitudes
3 Analysis of Radiative Energy Transfers: Black-body Radiation
3.1. Introduction
3.2. Definition of a black body
3.3. Physical creation of the black body
3.4. Black-body radiation
4 Radiant Properties of Real Surfaces
4.1. Introduction
4.2. Emissivity of a real surface
4.3. Gray body
4.4. Effective temperature of a real surface
4.5. Luminance of a real surface
4.6. Kirchhoff’s law
5 Radiation Balances between Real Surfaces Separated by a Transparent Medium
5.1. Introduction
5.2. The angle factor
5.3. Expressing the shape factor
5.4. Relations between shape factors
5.5. Reducing the number of shape factors to be calculated
5.6. Superposition principle
5.7. Crossed-string method: very long surfaces
6 Practical Determination of Shape Factors
6.1. Introduction
6.2. Methods of practical determination of shape factors
6.3. Shape factors for standard geometric configurations
7 Balances of Radiative Energy Transfers between Black Surfaces
7.1. Introduction
7.2. Establishing balance equations
7.3. Solving radiation balances for black surfaces
8 Balances on Radiative Energy Transfers between Gray Surfaces
8.1. Introduction
8.2. Reminder of the radiative properties of real surfaces
8.3. Radiosity
8.4. Balances on gray surfaces
8.5. Solving the radiation balance equations between gray surfaces
9 Electrical Analogies in Radiation
9.1. Introduction
9.2. Analogies for black surfaces
9.3. Electrical analogies for heat transfer between gray surfaces
9.4. Gray shape factor
9.5. Illustration: gray shape factor of the industrial furnace with adiabatic walls
10 Reduction of Radiating Energy Transfers through Filtering
10.1. Introduction
10.2. Expressing the flux density for a filterless transfer
10.3. Reducing the flux through filtering
10.4. Comparing
q
0
and
q
m
10.5. Scenario where plates
S
0
and
S
n
have the same emissivity
11 Radiative Energy Transfers in Semi-transparent Media
11.1. Introduction
11.2. Radiation in semi-transparent gases
11.3. Illustration: calculating the flux radiated by combustion gases
11.4. Reading: discovery of the Stefan-Boltzmann law
12 Exercises and Solutions
EXERCISE 12.1. Lithium vapor lamps
EXERCISE 12.2. Mercury vapor lamps
EXERCISE 12.3. Radiating transfer between two surfaces
EXERCISE 12.4. Expression of ϕ
1
EXERCISE 12.5. Black body
EXERCISE 12.6. Calculating the emittances of a black surface at different temperatures
EXERCISE 12.7. Luminance of a black body
EXERCISE 12.8. Balances of radiative energy transfers between black surfaces
EXERCISE 12.9. Balance of radiative energy transfers between a gray surface and a black surface
EXERCISE 12.10. Effective temperature of a gray surface
EXERCISE 12.11. Surfaces under total influence
EXERCISE 12.12. Expressing the solid angle
EXERCISE 12.13. Asymptotic form of Planck's law for short wavelengths
EXERCISE 12.14. Asymptotic form of Planck's law for large wavelengths
EXERCISE 12.15. Calculating the Sun’s temperature from its spectral profile
EXERCISE 12.16. Determining the wavelength corresponding to a star’s maximum intensity
EXERCISE 12.17. Comparison of energies radiated in different bands
EXERCISE 12.18. Calculating the luminance of a black surface
EXERCISE 12.19. Heat transfer between two gray, opaque surfaces
EXERCISE 12.20. Illuminance of the Earth from the Sun
EXERCISE 12.21. Lighting a parallelepiped-shaped room
EXERCISE 12.22. Radiation between a hot source and a wall
EXERCISE 12.23. Cables with parallel axes
EXERCISE 12.24. Elementary surface perpendicular to a rectangle
EXERCISE 12.25. Parallel planes, centered on an axis, with the same surface area
EXERCISE 12.26. Two parallel bands of different widths
EXERCISE 12.27. Two cylinders with parallel axes
EXERCISE 12.28. Two rectangular perpendicular planes with a side in common
EXERCISE 12.29. Shape factors of complementary surfaces
EXERCISE 12.30. Lighting via the corner of a ceiling
EXERCISE 12.31. Optimizing the location of a bay window
EXERCISE 12.32. Lighting a conference room using a luminous disc
EXERCISE 12.33. Luminous flux of a public lighting point
EXERCISE 12.34. Heating of an outdoor dining area
EXERCISE 12.35. Radiation inside a cold room
EXERCISE 12.36. Reducing heat exchanges using a filter
EXERCISE 12.37. Reducing radiative transfer through filtration
EXERCISE 12.38. Calculating the solar radiation received on the ground
Appendix: Database
A.1. Introduction
A.2. Densities
A.3. Heat capacities
A.4. Heat conductivities
A.5. Data on heat insulation materials
A.6. Physical properties of water
A.7. Physical properties of air
A.8. ω
1
values for the analytical solution of heat equations
A.9. Values of A
ω1
A.10. Γ function
A.11. Bessel functions
A.12. Physical properties of nanofluids
A.13. Physical properties of molten salts
A.14. Physical properties of liquid metals
A.15. Emissivities
A.16. Emittance fractions in a given wavelength band
A.17. Unit conversion tables
A.18. Fundamental constants
References
Index
End User License Agreement
Chapter 1
Table 1.1. The different regions of the electromagnetic spectrum
Chapter 3
Table 3.1. Calculation of values of λm for temperatures between 300 and 5,500 K.
Table 3.2. Values of λ T for infrared band boundaries
Table 3.3. Fractions f01 and f02 of the energies emitted (in %) and calculation ...
Table 3.4. Fractions, f0, λ1, emitted at different values of λT
Table 3.5. Fractions, f0, λ2, emitted at different values of λT
Chapter 4
Table 4.1. Total emissivities of several materials
Chapter 6
Table 6.1. Calculating F12
Table 6.2. F12 as a function of and α
Chapter 7
Table 7.1. Equilibrium temperatures of the baking oven
Table 7.2. Calculations of the different fluxes
Table 7.3. Results
Chapter 12
Table 12.1. What does ϕ12 represent?
Table 12.2. Solution
Table 12.3. Choice of answers
Table 12.4. Solution
Table 12.5. Which answers apply to a black body?
Table 12.6. Solution
Table 12.7. What are the true properties for a black body?
Table 12.8. Properties that are true for a black body
Table 12.9. Wavelengths considered
Table 12.10. Monochromatic emittances for different wavelengths
Table 12.11. Values of λ T for visible boundaries
Table 12.12. Fractions f01 and f02 for each source
Table 12.13. Values of λ T for infrared band boundaries
Table 12.14. Fractions f01 and f02 for each source
Table 12.15. Distance from the ground
Table 12.16. Angle factors for different distances
Table 12.17. F12 for different values of c
Table 12.18. Values of parameter a
Table 12.19. F12 and F21
Table 12.20. Values of δ
Table 12.21. F12 for different gaps
Table 12.22. Values of c
Table 12.23. F12 for different widths
Table 12.24. Boundaries of F12 for different widths
Table 12.25. F32 as a function of δ
Table 12.26. F12 as a function of δ
Table 12.27. Number of filters to be used
Appendix
Table A.1. Densities for metals and alloys (in kg/m3)
Table A.2. Densities for construction materials (in kg/m3)
Table A.3. Densities according to manufacture (kg/m3)
Table A.4. Sensible heats for metals and alloys (J kg-1°C)
Table A.5. Sensible heats for certain construction materials (J kg-1°C)
Table A.6. Sensible heats of certain thermal insulation materials
Table A.7. Heat conductivities (metals and alloys)
Table A.8. Heat conductivities (construction materials)
Table A.9. Conductivities of certain thermal insulation materials
Table A.10. Physical data and mechanical properties of heat insulators
Table A.11. Density(ρ), sensible heat (Cp), thermal conductivity (λ), thermal di...
Table A.12. Density (ρ), sensible heat (Cp), thermal conductivity (λ), thermal d...
Table A.13. ω1 solutions according to the Biot number for planar, cylindrical or...
Table A.14. Coefficients of Aω1 according to the Biot number for planar, cylindr...
Table A.15. Evolution of function Γ for the first natural numbers
Table A.16. Molar composition of FLiNaK
Table A.17. Density of FLiNaK according to temperature (T is expressed in K, ρ i...
Table A.18. Viscosity of FLiNaK according to temperature (T is expressed in K, μ...
Table A.19. Viscosity of FLiNaK according to temperature (T is expressed in K, λ...
Table A.20. Physical properties of FLiNaK according to temperature
Table A.21. Molar composition of FLiBe
Table A.22. Density of FLiBe according to temperature (T is expressed in K, ρ is...
Table A.23. Physical properties of FLiBe according to temperature
Table A.24. Physical properties of KMgCl according to temperature
Table A.25. Molar composition of NaNOK
Table A.26. Thermal conductivities of NaNOK
Table A.27. Physical properties of NaNOK according to temperature
Table A.28. Emissivities
Table A.29. Values of f0λ for different values of λT
Table A.30. Unit conversion table
Table A.31. Fundamental constant values
Cover
Table of Contents
Begin Reading
v
iii
iv
xi
xii
xiii
xiv
xv
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
Energy Engineering Set
coordinated byAbdelhanine Benallou
Volume 4
Abdelhanine Benallou
First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE Ltd27-37 St George’s RoadLondon SW19 4EUUK
www.iste.co.uk
John Wiley & Sons, Inc.111 River StreetHoboken, NJ 07030USA
www.wiley.com
© ISTE Ltd 2019
The rights of Abdelhanine Benallou to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2019932202
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-277-9
“True strength is that which radiates through knowledge”.
Antonin Artaud
Umbilical Limbo (1925)
For several years, I have cherished the wish of devoting enough time to the writing of a series of books on energy engineering. The reason is simple: for having practiced for years teaching as well as consulting in different areas ranging from energy planning to rational use of energy and renewable energies, I have always noted the lack of formal documentation in these fields to constitute a complete and coherent source of reference, both as a tool for teaching to be used by engineering professors and as a source of information summarizing, for engineering students and practicing engineers, the basic principles and the founding mechanisms of energy and mass transfers leading to calculation methods and design techniques.
But between the teaching and research tasks (first as a teaching assistant at the University of California and later as a professor at the École des mines de Rabat, Morocco) and the consulting and management endeavors conducted in the private and in the public sectors, this wish remained for more than twenty years in my long list of priorities, without having the possibility to make its way up to the top. Only providence was able to unleash the constraints and provide enough time to achieve a lifetime objective.
This led to a series consisting of nine volumes:
–
Volume 1
: Energy and Mass Transfers;
–
Volume 2
: Energy Transfers by Conduction;
–
Volume 3
:Energy Transfers by Convection;
–
Volume
4: Energy Transfers by Radiation;
–
Volume 5
: Mass Transfers and Physical Data Estimation;
–
Volume 6
: Design and Calculation of Heat Exchangers;
–
Volume 7:
Solar Thermal Engineering;
–
Volume 8
: Solar Photovoltaic Energy Engineering;
–
Volume 9:
Rational Energy Use Engineering.
The present book is the fourth volume of this series. It concerns the study of radiation heat transfer.
As we will see, radiation is one of the most significant modes of energy transfer. Even in outer space, this mode serves to convey solar radiation and thus provide the energy necessary for life on Earth. Closely linked to electromagnetic wave transfer, radiation obeys specific rules and equations that have numerous applications in engineering.
A series of exercises is presented at the end of this document, aimed at enabling students to implement the calculation techniques specific to radiation transfer as rapidly as possible. These exercises are designed to correspond as closely as possible to real-life situations occurring in industrial practice or everyday life.
Abdelhanine BENALLOU
March 2019
Whilst conduction and convection both represent significant modes of heat transfer in industrial equipment, radiation can be, under certain conditions, the dominant mode. This is particularly the case for heat exchange occurring in industrial furnaces and in combustion chambers.
It is also thanks to thermal radiation that the energy emitted by the Sun propagates through different media before reaching the Earth, passing through interstellar spaces comprising the extremely diffuse gases and dust of the Milky Way, the interastral voids, and the Earth’s atmosphere.
Yet transfer by radiation is characterized by an essential specific feature that differentiates it from conduction and convection. Indeed, as we saw in Volume 1 of this series, heat transfer by radiation can occur between bodies, at a distance, even without a “support medium” to convey energy. In reality, in this energy transfer, heat can even be exchanged between surfaces separated by vacuum. Of course, radiation can also take place between surfaces separated by air or by any homogeneous or non-homogeneous medium.
This energy transfer mode can therefore occur without the need for either contact-continuity (as with conduction), or a carrier fluid (as with convection). In actual fact, this characteristic is inextricably linked to the very nature of the phenomena governing radiation heat transfer and, above all, to the very essence of radiant energy. As we will demonstrate in Chapter 1, radiant energy is essentially wave-based in nature. It is generated through the transfer of electromagnetic waves between surfaces. Given that waves transport photons, radiant energy is also corpuscular in nature.
This volume aims at analyzing in detail the basics of energy transfer by radiation, according to the perspective of determining design equations for industrial equipment such as furnaces, boiler heaters, etc. This analysis uses a set of parameters that are specific to this energy transfer mode. These parameters are presented in Chapter 2 of the present volume.
Moreover, as we will see in Chapter 3, the study of radiation of matter is greatly facilitated by the introduction of a virtual component having an ideal radiative behavior. This component is referred to as a black body, the radiation of which is entirely governed by laws such as Planck’s law, the Stefan-Boltzmann law or the Wien laws.
In reality, introducing the black body constitutes a tool enabling the studying of nonvirtual, nonideal real bodies. Indeed radiation of any real surface is studied by linking it to that of the ideal black body. This is accomplished through the introduction of a specific parameter, emissivity (Chapter 4); which is defined as the ratio between the energy radiated by a real surface at a given temperature divided by the energy which would be emitted by a black body under the same temperature.
The different parameters defined in chapters 2 to 4 make it possible to analyze radiative energy transfers between surfaces separated by a transparent medium (Chapter 5).
Moreover, radiative energy exchange between surfaces depends on the geometric positions occupied by these surfaces in space. This specific feature is taken into account using angle factors, whose practical calculation methods are covered in Chapter 6.
In practical engineering calculations, it is sometimes justified to assume that some surfaces have a black body behavior. It is in this perspective that Chapter 7 is reserved for energy balances for radiations between black surfaces.
It is necessary however, to underline that the “black body assumption” does not hold for all surfaces. Those surfaces which cannot be assumed to be black are called gray surfaces. Radiative energy balances between gray surfaces represent therefore most of the practical situations encountered in engineering calculations. These cases are analyzed in Chapter 8.
From a computational point of view, radiative energy balances often lead to large systems of equations to be resolved. This can be rather complicated when more than two surfaces are involved. But the introduction of electrical analogs (see Chapter 9) can lead to easier ways of resolution.
In most practical situations, we wish to maximize energy transfer between surfaces. But in certain cases, we may wish to reduce the transfers by radiation between surfaces. This is for example the case when you try to reduce energy input to a building from its glazing. This task is generally accomplished by introducing filters. Chapter 10 shows that interposing filters between surfaces can lead to significant reductions in the energy exchanged.
On a different note, in furnaces and boilers we often encounter energy transfer by radiation between surfaces which are separated by non-transparent media. Indeed, the latter are often charged with molecules of carbon dioxide (CO2), water vapor (H2O) and traces of SO2, NOx and unburned hydrocarbons. Under these conditions (see Chapter 11), the medium contributes to the exchange by absorbing a portion of the radiation and by reflecting another portion.
Lastly, in order to help the reader assimilate the calculation methods presented in this book, Chapter 12 is devoted to a series of practical exercises and to the presentation of their solutions; meanwhile the physical data required for the calculations are grouped together in the Appendix (database).
The origin of radiation is almost as old as the history of the creation of matter. Its essence finds itself combined with that of matter and electromagnetic waves originating far back in the Big Bang. Indeed, according to the Big Bang model, presented in the form of a light-hearted summary in a reader-friendly article (Lachiezo-Rey, 2016), the first particles (quarks) assembled to form protons and neutrons. Then, this assembly process continued to form the first atomic nuclei. This is known as primordial nucleosynthesis.
It enabled the development of the simplest atomic nuclei: hydrogen (1 proton), deuterium (proton + 1 neutron), helium (2 protons + 2 neutrons) and lithium (3 protons and 4 neutrons). All other nuclei known to us today as constituting matter would be formed later.
In ionized gas state, this matter emits electromagnetic waves that will be received by the rest of the matter. These energy exchanges between matter and electromagnetic waves form the basis of processes that allowed other nuclei to develop, resulting in the composition of matter that we know today.
The origin of radiation is thus found confined in infinitesimal matter.
The work conducted by Max Planck (1858–1947), Niels Bohr (1885–1962) and Albert Einstein offers a model that allows us to trace back to the corpuscular origin of radiation. Indeed, interactions between radiation and matter, first demonstrated by Max Planck, showed that exchanges between electromagnetic radiation and matter can only occur in bundles, having specific energies that depend on the matter considered. He referred to these bundles as quanta and so quantum mechanics was born.
Albert Einstein would later conclude that these quanta are carried by particles: photons. He also asserted that these photons move at the speed of light and that they convey energy which is characterized by a wave of length λ, well defined by the matter considered.
Niels Bohr’s atomic model came to complete this representation of radiation-matter interactions.
In Bohr’s model, an atom can only exist in certain energy states. Each of these states is defined by a specifically-determined energy level. The transition from an initial state, defined by energy level Ei, to a final state (EF) can only take place with a radiation of energy ER, such that:
Thus (see Figure 1.1), the transition of an atom from an excited state (EE) to a less excited state (EM) leads to the emission of a photon, the energy (hν) of which is such that:
Figure 1.1.Radiation emission by de-excitation of an atom. For a color version of this figure, see www.iste.co.uk/benallou/energy4.zip
Conversely, the absorption of a photon of energy hν by an atom that is at initial energy level, Ei, returns it to an excited state, EE, such that (see Figure 1.2):
Figure 1.2.Excitation of an atom by absorption of a photon. For a color version of this figure, see www.iste.co.uk/benallou/energy4.zip
Thus, the quantum model shows that:
– When matter is subject to electromagnetic radiation (such as solar radiation), and when the radiation wavelength corresponds to the absorbable quanta, then the matter can be excited. Absorption of this energy by the matter induces a switching to a more excited state. On an atomic scale, the latter can be reflected by a change in the matter energy level. Yet, on the scale of several atoms grouped into a molecule, excitation is reflected by vibrations-translations of the atoms making up the molecular structure, thus leading to an increase in the matter temperature.
– Conversely, when the matter is in an excited state (due to heating or electrical discharge, for example), and when this matter can exist in a lower energy level, then the energy of the excited state can decay, generating a quantum, the wavelength of which is compatible with the lower energy levels of the matter considered. In other words, the matter can emit electromagnetic radiation by placing itself at a more stable energy level.
The following illustrations demonstrate the different applications of this phenomenon, which enable heating and the generation of lighting for example.
Neon tubes are used in illuminated signs. They usually contain neon in the form of low-pressure gas. The tubes generally comprise two electrodes, one on each edge.
When energized, these electrodes generate a potential difference that results in the circulation of electrons within the gas. The electrons then transfer energy to the neon atoms, placing them in a higher energy state. Then, as they de-excite, the neon atoms emit a red light.
Figure 1.3 represents the different energy sta es of the neon atom.
Figure 1.3.Energy states of the neon atom (in eV)