Experimental Mechanics of Solids and Structures - Jérome Molimard - E-Book

Experimental Mechanics of Solids and Structures E-Book

Jérome Molimard

0,0
139,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

From the characterization of materials to accelerated life testing, experimentation with solids and structures is present in all stages of the design of mechanical devices. Sometimes only an experimental model can bring the necessary elements for understanding, the physics under study just being too complex for an efficient numerical model. This book presents the classical tools in the experimental approach to mechanical engineering, as well as the methods that have revolutionized the field over the past 20 years: photomechanics, signal processing, statistical data analysis, design of experiments, uncertainty analysis, etc. Experimental Mechanics of Solids and Structures also replaces mechanical testing in a larger context: firstly, that of the experimental model, with its own hypotheses; then that of the knowledge acquisition process, which is structured and robust; finally, that of a reliable analysis of the results obtained, in a context where uncertainty could be important.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 202

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title

Copyright

Foreword

Introduction

1 Mechanical Tests

1.1. Introduction

1.2. Measurable quantities

1.3. Tensile test

1.4. Bending test

2 A Few Sensors Used in Mechanics

2.1. Introduction

2.2. Strain measurement

2.3. Displacement measurement

2.4. Force measurement

2.5. Acceleration measurement

3 Optical Full-Field Methods

3.1. Overview

3.2. Selection of a field optical method

3.3. Main processing methods of photomechanical results

4 Basic Tools for Measurement Methods

4.1. Introduction

4.2. Measurement and precision

4.3. Experimental test plans

4.4. Hypothesis tests

5 Exercises

5.1. Multiple-choice questions

5.2. Problem: designing a torque meter

5.3. Problem: traction test on a composite

5.4. Problem: optic fiber Bragg gratings

5.5. Problem: bending a MEMS micro-sensor

5.6. Problem: studying a 4-point bending system

5.7. Digital pressure tester: statistical tests

Conclusion

Bibliography

Index

End User License Agreement

List of Illustrations

Introduction

Figure I.1. Assembly for frequency analysis of a bicycle wheel (according to [MOU 98])

Figure I.2. Examples of vibration modes of a bicycle wheel (according to [MOU 98])

Figure I.3. Numerical and experimental response of a bicycle wheel (according to [MOU 98])

Figure I.4. Study of mechanical effects of a lumbar belt (according to [BON 15])

Figure I.5. Mechanical description of rolling (according to [MOL 99])

Figure I.6. Representation of joint contact; the hatched areas correspond to direct metal–metal contacts (in [MOL 99])

Figure I.7. Synthetic result of the “rolling machine” test; Coulomb friction coefficient (in %) with respect to the ratio of average oil height and average height of roughness (in [MOL 99])

Figure I.8. Synthetic result of the “UHV tribometer” test: Coulomb friction coefficient (gross data) with respect to the pressure

Figure I.9. Synthetic result of “pilot rolling mill” test, Coulomb friction coefficient (in %) with respect to rolling speed (in [MON 94])

Figure I.10. Identification of friction from various rolling models for similar basic experimental data (in [MON 94])

Figure I.11. Block diagram of an experimental process

1 Mechanical Tests

Figure 1.1. Screw tensile testing machine

Figure 1.2. Example of test specimen shape (according to [GOË 92])

Figure 1.3. Typical traction curve of a metallic material

Figure 1.4. Three-point bending

Figure 1.5. Types of damage during a 3 point bending test. Damage due to traction and compression are consistent; inter-laminar shear damage is non-consistent

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!