132,99 €
Focusing on a variety of coatings, this book provides detailed discussion on preparation, novel techniques, recent developments, and design theories to present the advantages of each function and provide the tools for better product performance and properties.
• Presents advantages and benefits of properties and applications of the novel coating types
• Includes chapters on specific and novel coatings, like nanocomposite, surface wettability tunable, stimuli-responsive, anti-fouling, antibacterial, self-healing, and structural coloring
• Provides detailed discussion on recent developments in the field as well as current and future perspectives
• Acts as a guide for polymer and materials researchers in optimizing polymer coating properties and increasing product performance
Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:
Veröffentlichungsjahr: 2015
Cover
Title page
Contributors
Preface
CHAPTER 1: Transparent Organic–Inorganic Nanocomposite Coatings
1.1 INTRODUCTION
1.2 FABRICATION STRATEGIES
1.3 MECHANICALLY ENHANCED NANOCOMPOSITE CLEARCOATS
1.4 OPTICAL NANOCOMPOSITE COATINGS
1.5 TRANSPARENT BARRIER NANOCOMPOSITE COATINGS
1.6 TRANSPARENT CONDUCTING NANOCOMPOSITE COATINGS
1.7 OTHER FUNCTIONAL NANOCOMPOSITE COATINGS
1.8 CONCLUSIONS AND OUTLOOK
REFERENCES
CHAPTER 2: Superhydrophobic and Superoleophobic Polymeric Surfaces
2.1 INTRODUCTION
2.2 SURFACE WETTABILITY
2.3 VARIOUS APPROACHES TO OBTAIN SUPER-REPELLENT SURFACES
2.4 APPLICATIONS OF SUPER-REPELLENT POLYMERIC SURFACES
2.5 SUMMARY AND OUTLOOK
ACKNOWLEDGMENTS
REFERENCES
CHAPTER 3: Superhydrophilic and Superamphiphilic Coatings
3.1 INTRODUCTION
3.2 BASIC CONCEPTS OF SUPERHYDROPHILICITY
3.3 NATURALLY OCCURRING SUPERHYDROPHILIC AND SUPERAMPHIPHILIC SURFACES
3.4 ARTIFICIAL SUPERHYDROPHILIC COATINGS
3.5 METHODS FOR FABRICATING SUPERHYDROPHILIC AND SUPERAMPHIPHILIC SURFACES
3.6 APPLICATIONS
3.7 COMMERCIAL COATINGS
3.8 CONCLUSIONS AND OUTLOOK
REFERENCES
CHAPTER 4: Self-Healing Polymeric Coatings
4.1 INTRODUCTION
4.2 SELF-HEALING APPROACHES FOR FUNCTIONAL POLYMERIC COATINGS
4.3 FUNCTIONALITIES RECOVERY AND POSSIBLE APPLICATIONS
4.4 CONCLUDING REMARKS AND CHALLENGES
ACKNOWLEDGMENTS
REFERENCES
CHAPTER 5: Stimuli-Responsive Polymers as Active Layers for Sensors
5.1 INTRODUCTION
5.2 STIMULI-RESPONSIVE SOFT MATERIALS
5.3 SENSORS FROM STIMULI-RESPONSIVE HYDROGEL LAYERS
5.4 IONOPHORE-BASED SENSORS
5.5 CHALLENGES AND OPPORTUNITIES
REFERENCES
CHAPTER 6: Self-Stratifying Polymers and Coatings
6.1 INTRODUCTION
6.2 BASIC CONCEPTS OF SELF-STRATIFICATION
6.3 CONCLUSIONS
REFERENCES
CHAPTER 7: Surface-Grafted Polymer Coatings: Preparation, Characterization, and Antifouling Behavior
7.1 INTRODUCTION
7.2 SURFACE-GRAFTING METHODS
7.3 BEHAVIOR OF SURFACE-GRAFTED POLYMERS
7.4 CHARACTERIZATION TECHNIQUES
7.5 ANTIFOULING COATINGS
7.6 SUMMARY
REFERENCES
CHAPTER 8: Partially Fluorinated Coatings by Surface-Initiated Ring-Opening Metathesis Polymerization
8.1 BASIC CONCEPTS
8.2 SURFACE CHEMISTRY
8.3 KINETICS OF FILM GROWTH
8.4 SURFACE ENERGY OF pNBF
n
FILMS
8.5 MICROMOLDING SIP
8.6 CONCLUSIONS AND OUTLOOK
ACKNOWLEDGMENTS
REFERENCES
CHAPTER 9: Fabrication and Application of Structural Color Coatings
9.1 INTRODUCTION
9.2 GENERAL METHODS OF COLLOIDAL ASSEMBLY
9.3 COLLOIDAL ASSEMBLY OF SOFT POLYMER SPHERES
9.4 USES OF STRUCTURAL COLORS
9.5 CONCLUSIONS AND OUTLOOK
REFERENCES
CHAPTER 10: Antibacterial Polymers and Coatings
10.1 INTRODUCTION
10.2 BASIC CONCEPTS
10.3 POLYMERS AND ANTIMICROBIAL COATING BINDERS
10.4 ADDITION OF INORGANIC PARTICLES
10.5 CONCLUSIONS AND OUTLOOK
REFERENCES
CHAPTER 11: Novel Marine Antifouling Coatings: Antifouling Principles and Fabrication Methods
11.1 INTRODUCTION
11.2 MARINE BIOFOULING
11.3 ENZYME-BASED COATINGS
11.4 FOULING RELEASE COATINGS
11.5 NONFOULING COATINGS
11.6 BIOINSPIRED MICRO-TOPOGRAPHICAL SURFACES
11.7 Amphiphilic Nanostructured Coatings
11.8 SUMMARY
REFERENCES
Index
End User License Agreement
Chapter 01
TABLE 1.1 The Physical Properties of Some Typical Nanostructure Materials
TABLE 1.2 The Type and Supplier of Layered Silicate
TABLE 1.3 Properties of P(St-BA-AA)/Silica Nanocomposite Films With Various Nanosilica Contents
TABLE 1.4 Some Commercial Nanoparticle Dispersions in Monomers
TABLE 1.5 Haze and Diamond Microscratch Hardness of Pure SR494/HDDA (1:1) Polyacrylate Film and Nanocomposite Coatings (9 wt.% SiO
2
)
TABLE 1.6 Abrasion, Haze, and Diamond Microscratch Hardness of Pure SR494 Polyacrylate and Nanocomposite Coatings (ca. 25 wt.% SiO
2
, Modified by Different Silanes)
TABLE 1.7 Wear and Scratch Parameters for the Nanocomposite Coatings
TABLE 1.8 Compositions and Properties of TBOT/epoxy/TiO
2
Hybrid Films
TABLE 1.9 Compositions and properties of fabricated ITO nanocomposite layers (thickness: 1–1.3 µm) deposited on glass substrates
Chapter 04
TABLE 4.1 Selection of Intrinsic Self-Healing Polymer Systems Which Have Been (or Have the Potential to be) Implemented in Polymeric Coatings
Chapter 06
TABLE 6.1 The Average Specific Gravities of Common Coating Polymers
TABLE 6.2 Examples of High and Low Surface Free Energy Resins
TABLE 6.3 Experimental Surface Energy Values of Materials Used in Prototype Formulation
Chapter 08
TABLE 8.1 Dispersive Surface Energies of Each Polymer Film as Estimated from Fig. 8.2
Chapter 11
TABLE 11.1 Other Amphiphilic AF Polymer Coating Systems
Chapter 01
FIG. 1.1 TEM micrographs of nanocoatings filled with 10 wt.% nanoparticles: colloidal nanosilica (left) and pyrogenic nanosilica (right).
FIG. 1.2 The possible routes for preparation of nanocomposite coatings from nanopowders.
FIG. 1.3 Schematic of the bead mill with centrifugal bead separation.
FIG. 1.4 The schematic of a three-roll mill for dispersing silica nanoparticles in TMPTA. The letters (
n
1
,
n
2
, and
n
3
) stand for the rotation speed of the rolls.
FIG. 1.5 The structures of (a) carboxy-terminated, (b) disulphide-terminated, and (c) phosphonic acid-terminated dendritic-linear block copolymers [15].
FIG. 1.6 Some principles for surface modification of nanoparticles.
FIG. 1.7 Ladder-like structure of silicon atoms in polysiloxanes grafted on the silica surface [23].
FIG. 1.8 TEM images of the UV-curable clay-containing coatings prepared with 10% clay by (a) three-roll milling, (b) bead milling, (c) ball milling, and (d) high speed mixing.
FIG. 1.9 Abrasion resistance of PU/silica composite films.
FIG. 1.10 Change of weight loss of PU/nano-SiO
2
composites as a function of (a) silica concentration (silica particle size 66 nm) and (b) silica diameter (silica content 2.25 wt.%) [68].)
FIG. 1.11 Percent conversion versus time plots of formulations prepared with 1, 3, and 10 wt.% of clay with the roll mill, the ball mill, the bead mill, and the high-speed mixer.
FIG. 1.12 Photopolymerization profiles of PUA/ZrO
2
nanocomposite coatings with different MPS-ZrO
2
loads (10 mW/cm
2
, air, 5 wt.% Iragure 184 based on the weight of PUA coating).
FIG. 1.13 Nanoindentation hardness (a) and pencil hardness (b) of the coatings samples as a function of the silica nanoparticle content.
FIG. 1.14 The pendulum hardness of the samples with different ZrO
2
contents.
FIG. 1.15 Results of the scratch tests (modified Vickers test) on composite coatings with different amounts of boehmite particles [100].
FIG. 1.16 Light transmittance in wear track as a function of wear cycles.
FIG. 1.17 Transmission spectra of Lowilite 24 and Lowilite 26 compared with nanoparticles of anatase-B and rutile-A in a cured alkyd resin film at 2% w/w on resin solids. Film thickness: a, 0.32 mm; b, 0.85 mm.
FIG. 1.18 Dependence of the optical transmittance of the films heated at 100°C on titanium content.
FIG. 1.19 Change of brightness (Δ
L
*) and
b
* value (Δ
b
*) of spruce wood samples coated with nanocomposite UV lacquer as UV protectant [129]. (Weathering time 1500 h, ZnO 1: 20 nm, Impregnation 1: an aqueous wood impregnation H5100 containing 2 wt.% of a solid lignin protecting agent 1; Impregnation 2: containing 5% of water-based lignin protecting formulation 2.)
FIG. 1.20 (a) The UV–vis absorbance spectra of pure PBMA film and ZnO/PBMA nanohybrid films synthesized by bulk polymerization containing ZnO NPs from 10 to 60 wt.% in 10 wt.% increments. (b) The UV−vis transmittance spectra of pure PBMA film and ZnO/PBMA nanohybrid films prepared by bulk polymerization and physical mixing method. The thickness of each film was about 100 ± 5 µm.
FIG. 1.21 Absorption spectra of coatings sols diluted 10,000 times in H
2
O. Coating with (A) colloidal silica, (B) colloidal ceria and zirconia, and (C) colloidal ceria.
FIG. 1.22 The refractive index of PbS-gelatin nanocomposites as a function of weight fraction of PbS. The solid line represents best-fitting of Equation (1.5).
FIG. 1.23 Refractive index values at 630 nm plotted versus TiO
2
volume fraction and weight fraction.
FIG. 1.24 Refractive index and average transmittance of TiO
2
-dispersed polymer films fabricated via the bead milling method (, neopentyl glycol dimethacrylate;, divinylbenzene; straight line, refractive index; dotted line, transmittance (400–780 nm) at film thickness of 5 µm).
FIG. 1.25 Variation of the refractive index of the 6FPI/TiO
2
nanocomposites with wavelength. The inset shows the variation of refractive index at 633 nm with titania content.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!