Komplexe Systeme - Klaus Richter - E-Book

Komplexe Systeme E-Book

Klaus Richter

0,0
14,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

FISCHER KOMPAKT. Verlässliches Wissen kompetent, übersichtlich und bündig dargestellt. Hinweise der Autoren auf neueste Entwicklungen, interessante Literatur und empfehlenswerte Links zu jedem Band finden sich im Internet.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 135

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Klaus Richter | Jan-Michael Rost

Komplexe Systeme

FISCHER E-Books

Inhalt

Grundriss1 Was ist Komplexität?Komplex oder kompliziert?Komplex oder chaotisch?Von der Linearität über das Chaos zur KomplexitätKomplexes Verhalten und Komplexität2 Komplexe Phänomene auf dem Weg ins ChaosSzenarien und Phänomene am Beispiel einer TierpopulationUniverselle formalisierte BeschreibungPeriodenverdoppelung und Pitchfork-BifurkationSelbstähnlichkeit und SkalierungStrukturen im Chaos: Inverse BifurkationenKomplexität an der Grenze zwischen Regularität und Chaos3 Komplexe Phänomene durch Interaktion: Zelluläre AutomatenTop-down oder bottom-upVielfalt: Zwischen Ordnung und UnordnungSelbstorganisation und NichtgleichgewichtZelluläre Automaten und das Spiel des LebensLeben in der Nähe des kritischen ZustandsKünstliches Leben und Evolution4 Granulare Materie und selbstorganisierte KritikalitätGranulate: Zwischen fest und flüssigSandhügel, Lawinen und SkalengesetzeErdbebenSelbstorganisierte Kritikalität5 Strukturbildung in der ChemieReaktionen im ModellReaktions-Diffusions-Systeme6 Komplexes Verhalten in der BiologieDie vierte Dimension des Lebens: Fraktale Struktur von Organismen7 Komplexe Quantensysteme der PhysikWellen- und QuantenphänomeneMesoskopische SystemeSpektrale StatistikQuantenphysik am Rande des ChaosVertiefungenPotenzgesetzeFraktaleDie gebrochene Dimension von Fraktalen und ihre MessungDie logistische Abbildung im Komplexen: Mandelbrot- und Julia-MengenFraktale in der NaturPhasenübergängeEins-über-f-RauschenZelluläre AutomatenDer Gödel’sche UnvollständigkeitssatzTuringmaschinenAlgorithmische KomplexitätGrenzen als Quelle der NaturerkenntnisAnhangGlossarLiteraturhinweiseAbbildungsnachweise:

Grundriss

1 Was ist Komplexität?

Komplex oder kompliziert?

Komplex erscheint zunächst nur als ein modischer Ersatz für kompliziert, das sich seinerseits für das deutsche Wort verwickelt eingebürgert hat. Gibt es tatsächlich einen sachlichen Unterschied zwischen kompliziert und komplex? Kompliziert ist ein System, das schwierig zu überblicken ist, dessen geduldige Analyse aber eine Zerlegung in Untereinheiten erlaubt, also eine Auflösung der »Verwicklung«. Mit Hilfe der übersichtlichen Teile wird ein Verständnis des Gesamtsystems möglich.

Für ein komplexes System, im Deutschen vielleicht am besten durch »vielschichtig« wiedergegeben, ist diese Art der Unterteilung nicht möglich, oder präziser, sie trägt nicht zum Verständnis des Gesamtsystems bei: Gerade die Vernetzung vermeintlicher Einzelteile prägt wesentliche Eigenschaften des Gesamtsystems, die mit Hilfe der getrennten Teile entweder nicht erfasst werden oder gar nicht existieren. Man spricht hier von Emergenz, oder etwas alltagstauglicher: Das Ganze ist mehr als die Summe seiner Teile.

Ein Auto bietet sich als Beispiel an: Es besteht aus vielen Einzelteilen oder auch Funktionseinheiten, die alle für sich verständlich sind und einem bestimmten Zweck dienen, den sie, so die Konstrukteure gut gearbeitet haben, auch erfüllen. Einmal zusammengebaut, ergibt sich eine neue Eigenschaft: Das Auto fährt!

Was wäre nun ein System, das ›nur‹ kompliziert ist? Vielleicht die verwickelten Gassen in einer typischen italienischen Altstadt, z.B. Florenz: Fast alle von ihnen sind Einbahnstraßen, aber wenn man einmal das Prinzip durchschaut hat, nach dem die Einbahnregelung aufgebaut ist, hat sich die Verwicklung gelöst und man findet sich gut zurecht. Eine kleine Änderung macht aus diesem komplizierten System ein komplexes System: Wenn die Richtung der Einbahnstraßen je nach Verkehrsbelastung flexibel gehandhabt würde, stadtauswärts oder stadteinwärts, dann entsteht ein Rückkopplungsmechanismus, der wesentlicher Bestandteil vieler komplexer Systeme ist. Er macht es unmöglich, die Richtung der Einbahnstraße zuverlässig vorherzusagen, sie hängt von den Verkehrsteilnehmern selbst ab. Unvorhersagbarkeit wiederum assoziieren wir mit chaotischem Verhalten, sind also komplexe Systeme einfach nur chaotisch?

Komplex oder chaotisch?

Sicher kann man sagen: Ein komplexes System trägt auch chaotische Züge. Der Umkehrschluss gilt allerdings nicht, chaotisch impliziert nicht notwendigerweise komplex. Rein chaotisches Verhalten ist nicht komplex, auch wenn eine kleine Änderung der Anfangsbedingung große Folgen haben kann. Das lässt sich besser verstehen, wenn man bedenkt, dass rein chaotisches Verhalten mit zufälligem Verhalten insofern verwandt ist, als beide (über längere Zeiten) nicht voraussagbar sind. Intuitiv werden wir aber einem zufälligen Muster keinen hohen Komplexitätsgrad zuschreiben, einem hochorganisierten Ameisenstaat aber schon. Informatiker und Logiker haben mit dem Begriff der ›logischen Tiefe‹ ein Maß formuliert, das sowohl einem regulären als auch einem zufälligen Muster einen niedrigen Komplexitätsgehalt zuordnet. Die Grundidee der algorithmischen Komplexität liegt darin, ein komplexes System durch seinen minimalen Informationsgehalt zu charakterisieren. Ob dies nun eine Beschreibung der Elemente im System ist und etwa ihrer zeitlichen Entwicklung oder z.B. nur der Vorschrift, nach der sich diese Elemente entwickeln, spielt keine Rolle.

Allerdings wird der Informationsgehalt und die damit assoziierte Komplexität stark von der jeweiligen Beschreibung ein und desselben Gegenstandes abhängen, wie das folgende Beispiel deutlich macht: Nehmen wir an, eine Seite Text soll an einen anderen Ort elektronisch übertragen werden. Um als Fax gesendet zu werden, wird sie gerastert und digitalisiert. Das bedeutet die Erzeugung einer großen Menge von Koordinaten, denen schwarze oder weiße Pixel zugewiesen werden. Nicht nur Buchstaben, auch kleine Verunreinigungen im Papier werden zu schwarzen Pixeln codiert. Es entsteht eine höchst umfangreiche und unüberschaubare Datenmenge, die man, ohne ihre Bedeutung zu kennen, für komplex halten könnte. Werden dagegen die Buchstaben der Wörter nach einem Schema codiert, wie dies in allen Computern nach internationalen Normen geschieht, und dann z.B. als E-Mail gesendet, ist der Aufwand und die Menge an Information erheblich geringer, das System erscheint weniger komplex.

Hieran wird auch eine Schwierigkeit deutlich, die bei der Einschätzung der Komplexität eines Systems auftritt: Sie zielt auf die minimale Information, mit der man das System beschreiben kann. Abgesehen von Systemen, die von vornherein mittels eines gegebenen Algorithmus erzeugt werden, also mit einer Vorschrift, die man kennt, kann man nie sicher sein, ob man die Beschreibung mit dem geringsten Aufwand bereits gefunden hat, die Komplexität also nicht überschätzt wird.

Mit dem quantitativen Aspekt des minimalen Informationsgehalts ist mit Komplexität in natürlicher Weise formuliert, was schon seinerzeit Ernst Mach (1838–1916) mit seiner Denkökonomie als Ziel der Wissenschaft ausgerufen hatte: die einfachste Beschreibung für Phänomene zu finden. Allerdings geschieht dies mit der Thematisierung der Komplexität heutzutage in radikal anderer Weise als zu Machs Zeit, in der man die Einfachheit als Gegensatz zu der eingangs diskutierten Kompliziertheit begriff und noch weit davon entfernt war, die Vielschichtigkeit des Komplexen angemessen in den Blick zu nehmen.

Von der Linearität über das Chaos zur Komplexität

Wahrscheinlich exisitieren in der realen Welt nur komplexe Systeme – vor 20 Jahren hätte in diesem Satz statt komplexe Systeme vielleicht chaotische Systeme gestanden, vor 200 Jahren lineare Systeme (auch wenn damals der Begriff noch nicht existierte). Dies zeigt den Fortschritt unserer wissenschaftlichen Entwicklung und darf uns gespannt machen auf die Zukunft. Naturwissenschaft, die sich der Mittel des reproduzierbaren Experiments und der Mathematik bedient, geht natürlicherweise davon aus, dass man ein bestimmtes System als Teil aus dem Gesamtzusammenhang herauslösen und dann isoliert als solches untersuchen und verstehen kann. In der Tat war und ist diese Art des Reduktionismus sehr erfolgreich, zuallererst im Bereich der unbelebten Natur, der Domäne der Physik. Hier ging es lange darum, überhaupt den Aufbau und die Prinzipien der Materie, also vorwiegend ihre Struktur zu verstehen. Wesentlich hierfür ist das Extremalprinzip. Es besagt, dass in einem abgeschlossenen System, welches nicht mehr Energie mit der Umgebung austauscht, ein Zustand minimaler Energie realisiert ist. Kleine Abweichungen von diesem im Allgemeinen stabilen Zustand bewirken dementsprechend kleine Änderungen. Dies ist der Gültigkeitsbereich der linearen Physik.

Schon im 19. Jahrhundert war durch Henri Poincaré, der die Bewegung dreier Himmelskörper untersuchte, klar, dass sich selbst ein abgeschlossenes System hochgradig nichtlinear verhalten kann und damit chaotisch ist. Aber erst vor etwa 25 Jahren begann eine breite Akzeptanz für Chaos als dem neben linearen Phänomenen ebenso wichtigen Pol nichtlinearer Phänomene in der Naturbeschreibung. Mit ziemlicher Sicherheit darf man annehmen, dass das neue Interesse für Chaos mit der Möglichkeit einherging, nichtlineare Phänomene zu simulieren. Hierzu sind beachtliche Computerressourcen notwendig, die erst um diese Zeit verfügbar wurden. Parallel dazu wurde ein mathematisches Instrumentarium entwickelt, welches Chaos präzise beschreibt und in seinen Unterschieden klassifiziert.

Heute ist Chaos und Irregularität als ebenso wichtig akzeptiert wie reguläres Verhalten. Aber wie meistens im ›wahren Leben‹ gibt es in der Natur weder ganz reguläre noch rein irreguläre Phänomene. Vielmehr dominieren Systeme, die beide Elemente enthalten und dadurch höchst facettenreich und vielschichtig, eben komplex sind. Mit aller Vorsicht, da die Forschung an komplexen Systemen eigentlich noch am Anfang steht, betrachten wir diese Charakterisierung als Arbeitsdefinition: Komplexes Verhalten ist ein solches mit Brüchen, zwischen Chaos und Regularität, oder wie es Karl Ziemelis kürzlich prägnant formuliert hat: »Komplexes Verhalten ist solches am Rande des Chaos«.[1] In der Tat offenbart der Weg ins Chaos (nicht das Chaos als Endpunkt selbst) viele der Elemente, die im Umgang mit komplexen Systemen eine Rolle spielen: Selbstähnlichkeit und Skaleninvarianz, Fraktale, kritisches Verhalten, Universalität sind Stichworte, die wir zu diskutieren haben werden.

Was aber hat diese Arbeitsdefinition mit dem Begriff von Komplexität zu tun, den wir eingangs anhand der Emergenz zur Diskussion gestellt hatten? Im Wesentlichen handelt es sich dabei um den Unterschied zwischen induktivem und deduktivem Vorgehen, um komplementäre Beschreibungen ein und desselben Sachverhaltes.

Im folgenden zweiten Kapitel werden wir anhand des Weges ins Chaos Elemente komplexen Verhaltens deduktiv beschreiben und kennen lernen. Danach nähern wir uns im dritten Kapitel komplexem Verhalten erneut, diesmal aber induktiv mit Hilfe zellulärer Automaten. Sie bestehen aus vielen einfachen Untereinheiten, den Zellen, die vernetzt neues, komplexes Verhalten zeigen. Zelluläre Automaten simulieren so die gleichzeitige Entwicklung der gekoppelten Elemente eines nichtlinearen Systems. Heute, im Zeitalter der Parallelprozessoren in Computern ist uns dies durchaus vertraut. Granulare Systeme, wie sie vielfach in der Natur vorkommen, werden im vierten Kapitel thematisiert. Sie lassen sich durch zelluläre Automaten beschreiben und weisen exemplarisch emergente Eigenschaften auf.

Komplexes Verhalten und Komplexität

Bisher haben wir komplexes Verhalten und Komplexität praktisch synonym benutzt. Das ist aber nicht ganz gerechtfertigt, denn complexity ist ein systemtheoretischer Ansatz, der bis in die 60er Jahre des vergangenen Jahrhunderts zurückreicht. Die Wurzeln kann man sogar noch früher im Wiener Kreis, dem erkenntnistheoretischen Programm von Rudolf Carnap und dem berühmten Gödel’schen Unvollständigkeitssatz sehen sowie in den fast zeitgleich von Alan Mathison Turing erfundenen Turingmaschinen. In der Tat handelt es sich bei diesen Wurzeln der Komplexität um ein Grenzgebiet zwischen Philosophie und Mathematik respektive Informatik, das wir anhand der schon erwähnten algorithmischen Komplexität kurz streifen werden. Es beinhaltet interessante Fragen nach dem Wechselspiel zwischen dem theoriebildenden Subjekt und dem zu beschreibenden Objekt. Die frühen Formalisierungen von Komplexität in andere Wissenschaften getragen zu haben und dort immer aufs Neue fruchtbar zu machen ist sicher ein großer Verdienst des privaten Forschungsinstituts für Komplexität in Santa-Fe, des Santa-Fe-Institute. Zu nennen sind hier auch die epochalen Beiträge der beiden Nobelpreisträger Manfred Eigen und Ilya Prigogine sowie das Lebenswerk von Hermann Haken, der den Begriff der Synergetik prägte. Komplexitätsforschung im Allgemeinen ist daher heute ein sehr weites Feld, das wirtschaftliche, gesellschaftliche und psychologische Phänomene mit einschließt.[2]

Wir werden uns hier auf den engeren Rahmen komplexer Systeme in den Naturwissenschaften konzentrieren, die wir dadurch definieren, dass sie komplexes Verhalten zeigen, sich also durch erscheinende Komplexität auszeichnen. Häufig entsteht komplexes Verhalten durch die wiederholte Anwendung einer einfachen Prozedur, also durch so genannte Iteration. In einem solchen Fall ist die logische Tiefe gering, während die erscheinende Komplexität dagegen groß ist. Nachdem wir uns in den ersten Kapiteln in komplementärer Weise, deduktiv und induktiv, dem Phänomen komplexer Systeme nähern, illustrieren die letzten Kapitel fünf bis sieben exemplarisch komplexes Verhalten in den Gegenstandsbereichen Chemie, Biologie und Physik.

2 Komplexe Phänomene auf dem Weg ins Chaos

Im Folgenden werden wir anhand der Modellierung des Generationenverhaltens einer Tierpopulation auf deduktivem Weg Einsicht gewinnen in die wesentlichen Elemente komplexen Verhaltens. Dazu gehören Selbstähnlichkeit, Kritikalität und Empfindlichkeit gegenüber Anfangsbedingungen, um nur einige der wichtigsten Stichworte zu nennen, denen wir im Folgenden noch oft begegnen werden. Einen parallelen, induktiven Einstieg in komplexes Verhalten bietet das dritte Kapitel über zelluläre Automaten. Die zeitliche Zu- und Abnahme einer Tierpopulation, der Umsatz einer Firma, ganz allgemein Wachstumsprozesse, können unerwartete Entwicklungen zeigen, von einer Stabilität über lange Zeiträume, über zyklisches Verhalten bis hin zu einem langsamen Niedergang. Der Grund dieser Vielfalt der Phänomene liegt an den Rahmenbedingungen begrenzter Ressourcen, welchen die Wachstumsprozesse unterliegen. Hierdurch kommt es zu einem Rückkopplungsmechanismus, der Nichtlinearität erzeugt und damit die Möglichkeit von Chaos und komplexem Verhalten eröffnet.

Szenarien und Phänomene am Beispiel einer Tierpopulation

Wenn man sich eine Population von Kaninchen vorstellt, die sich mit einer bestimmte Rate vermehren, so wird diese Rate durch das zur Verfügung stehende Nahrungsangebot beeinflusst. Gibt es wenige Kaninchen, dann steht pro Kaninchen viel Nahrung zu Verfügung, die Reproduktionsrate erhöht sich. Dadurch entstehen viele Kaninchen, was die Nahrung je Kaninchen reduziert und zu sozialem Stress führt, es kommt zu einer Verringerung der Reproduktion. Aufgrund dieser Überlegung erwartet man ein zyklisches Verhalten der Population. Dies kommt in der Tat vor, ist aber nur eines der vielfältigen Phänomene, die auftreten. Für unser Beispiel sind mindestens drei sehr unterschiedliche Szenarien denkbar, je nach gegebenen Umweltbedingungen:

Szenario I: Man kann eine fast beliebige Menge von Kaninchen aussetzen, nach einigen Generationen pendelt sich die Population auf einen stabilen Wert ein.

 

Szenario II: Über mehrere Jahre (Generationen) oszilliert die Population zwischen einem Maximal- und einem Minimalwert, z.B. mit einer zweijährigen Periode. Dies ist das oben angesprochene zyklische Verhalten.

 

Szenario III: Die Population schwankt von Generation zu Generation sehr stark, zeigt chaotisches Verhalten.

Überraschenderweise sind diese Phänomene mit einer einzigen, einfachen mathematischen Vorschrift, die wir unten im Detail diskutieren werden, formalisierbar. Dabei zeigt sich, dass die verschiedenen Szenarien durch Veränderung der Stärke der Rückkopplung auseinander hervorgehen und dem universellen Prinzip der Selbstähnlichkeit gehorchen.