59,99 €
This fifth edition of the most accessible introduction to MRI principles and applications from renowned teachers in the field provides an understandable yet comprehensive update.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 439
Veröffentlichungsjahr: 2015
Cover
Title Page
Copyright
Preface
ABR study guide topics
Chapter 1: Production of net magnetization
1.1 Magnetic fields
1.2 Nuclear spin
1.3 Nuclear magnetic moments
1.4 Larmor precession
1.5 Net magnetization
1.6 Susceptibility and magnetic materials
Chapter 2: Concepts of magnetic resonance
2.1 Radiofrequency excitation
2.2 Radiofrequency signal detection
2.3 Chemical shift
Chapter 3: Relaxation
3.1
T1
relaxation and saturation
3.2
T2
relaxation,
T2
* relaxation, and spin echoes
Chapter 4: Principles of magnetic resonance imaging – 1
4.1 Gradient fields
4.2 Slice selection
4.3 Readout or frequency encoding
4.4 Phase encoding
4.5 Sequence looping
Chapter 5: Principles of magnetic resonance imaging – 2
5.1 Frequency selective excitation
5.2 Composite pulses
5.3 Raw data and image data matrices
5.4 Signal-to-noise ratio and tradeoffs
5.5 Raw data and
k
-space
5.6 Reduced
k
-space techniques
5.7 Reordered
k
-space filling techniques
5.8 Other
k
-space filling techniques
5.9 Phased-array coils
5.10 Parallel acquisition methods
Chapter 6: Pulse sequences
6.1 Spin echo sequences
6.2 Gradient echo sequences
6.3 Echo planar imaging sequences
6.4 Magnetization-prepared sequences
Chapter 7: Measurement parameters and image contrast
7.1 Intrinsic parameters
7.2 Extrinsic parameters
7.3 Parameter tradeoffs
Chapter 8: Signal suppression techniques
8.1 Spatial presaturation
8.2 Magnetization transfer suppression
8.3 Frequency-selective saturation
8.4 Nonsaturation methods
Chapter 9: Artifacts
9.1 Motion artifacts
9.2 Sequence/Protocol-related artifacts
9.3 External artifacts
Chapter 10: Motion artifact reduction techniques
10.1 Acquisition parameter modification
10.2 Triggering/Gating
10.3 Flow compensation
10.4 Radial-based motion compensation
Chapter 11: Magnetic resonance angiography
11.1 Time-of-flight MRA
11.2 Phase contrast MRA
11.3 Maximum intensity projection
Chapter 12: Advanced imaging applications
12.1 Diffusion
12.2 Perfusion
12.3 Functional brain imaging
12.4 Ultra-high field imaging
12.5 Noble gas imaging
Chapter 13: Magnetic resonance spectroscopy
13.1 Additional concepts
13.2 Localization techniques
13.3 Spectral analysis and postprocessing
13.4 Ultra-high field spectroscopy
Chapter 14: Instrumentation
14.1 Computer systems
14.2 Magnet system
14.3 Gradient system
14.4 Radiofrequency system
14.5 Data acquisition system
14.6 Summary of system components
Chapter 15: Contrast agents
15.1 Intravenous agents
15.2 Oral agents
Chapter 16: Safety
16.1 Base magnetic field
16.2 Cryogens
16.3 Gradients
16.4 RF power deposition
16.5 Contrast media
Chapter 17: Clinical applications
17.1 General principles of clinical MR imaging
17.2 Examination design considerations
17.3 Protocol considerations for anatomical regions
17.4 Recommendations for specific sequences and clinical situations
References and suggested readings
Index
End User License Agreement
ix
xi
xii
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
Cover
Table of Contents
Preface
Begin Reading
Chapter 1: Production of net magnetization
Figure 1.1 A rotating nucleus (spin) with a positive charge produces a magnetic field known as the magnetic moment oriented parallel to the axis of rotation (a). This arrangement is analogous to a bar magnet in which the magnetic field is considered to be oriented from the south to the north pole (b).
Figure 1.2 Microscopic and macroscopic pictures of a collection of spins in the absence of an external magnetic field. In the absence of a magnetic field, the spins have their axes oriented randomly (microscopic picture, left side of figure). The vector sum of these spin vectors is zero (macroscopic picture, right side).
Figure 1.3 Inside a magnetic field, a proton precesses or revolves about the magnetic field. The precessional axis is parallel to the main magnetic field,
B
0
. The
z
component of the spin vector (projection of the spin onto the
z
axis) is the component of interest because it does not change in magnitude or direction as the proton precesses. The
x
and
y
components vary with time at a frequency ω
0
proportional to
B
0
as expressed by equation (1.1).
Figure 1.4 Zeeman diagram. In the absence of a magnetic field (left side of figure), a collection of spins will have the configurations of
z
components equal in energy so that there is no preferential alignment between the spin-up and spin-down orientations. In the presence of a magnetic field (right side), the spin-up orientation (parallel to
B
0
) is of lower energy and its configuration contains more spins than does the higher-energy spin-down configuration. The difference in energy Δ
E
between the two levels is proportional to
B
0
.
Figure 1.5 Microscopic (a) and macroscopic (b) pictures of a collection of spins in the presence of an external magnetic field. Each spin precesses about the magnetic field. If a rotating frame of reference is used with a rotation rate of ω
0
, the collection of protons appears stationary. Whereas the
z
components are one of two values (one positive and one negative), the
x
and
y
components can be any value, positive or negative. The spins will appear to track along two cones, one with a positive
z
component and one with a negative
z
component. Because there are more spins in the upper cone, there will be a nonzero vector sum
M
0
, the net magnetization. It will be of constant magnitude and parallel to
B
0
.
Chapter 2: Concepts of magnetic resonance
Figure 2.1 Energy absorption (microscopic). The difference in energy Δ
E
between the two configurations (spin up and spin down) is proportional to the magnetic field strength
B
0
and the corresponding precessional frequency ω
0
, as expressed in Equation (2.1). When energy at this frequency is applied, a spin from the lower-energy state is excited to the upper-energy state. Also, a spin from the upper-energy state is stimulated to give up its energy and relax to the lower-energy state. Because there are more spins in the lower-energy state, there is a net absorption of energy by the spins in the sample.
Figure 2.2 Energy absorption (macroscopic). In a rotating frame of reference, the RF pulse broadcast at the resonant frequency ω
0
can be treated as an additional magnetic field
B
1
oriented perpendicular to
B
0
. When energy is applied at the appropriate frequency, the spins absorb it and
M
rotates into the transverse plane. The initial direction of rotation is perpendicular to both and . The amount of resulting rotation of is known as the pulse flip angle.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
