Multiphase Catalytic Reactors - Zeynep Ilsen Önsan - E-Book

Multiphase Catalytic Reactors E-Book

Zeynep Ilsen Önsan

0,0
136,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

* Provides a holistic approach to multiphase catalytic reactors from their modeling and design to their applications in industrial manufacturing of chemicals * Covers theoretical aspects and examples of fixed-bed, fluidized-bed, trickle-bed, slurry, monolith and microchannel reactors * Includes chapters covering experimental techniques and practical guidelines for lab-scale testing of multiphase reactors * Includes mathematical content focused on design equations and empirical relationships characterizing different multiphase reactor types together with an assortment of computational tools * Involves detailed coverage of multiphase reactor applications such as Fischer-Tropsch synthesis, fuel processing for fuel cells, hydrotreating of oil fractions and biofuels processing

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1285

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Title Page

List of contributors

Preface

PART 1: Principles of catalytic reaction engineering

CHAPTER 1: Catalytic reactor types and their industrial significance

1.1 Introduction

1.2 Reactors with fixed bed of catalysts

1.3 Reactors with moving bed of catalysts

1.4 Reactors without a catalyst bed

1.5 Summary

References

CHAPTER 2: Microkinetic analysis of heterogeneous catalytic systems

2.1 Heterogeneous catalytic systems

2.2 Intrinsic kinetics of heterogeneous reactions

2.3 External (interphase) transport processes

2.4 Internal (intraparticle) transport processes

2.5 Combination of external and internal transport effects

2.6 Summary

Nomenclature

Greek letters

References

PART 2: Two‐phase catalytic reactors

CHAPTER 3: Fixed‐bed gas–solid catalytic reactors

3.1 Introduction and outline

3.2 Modeling of fixed‐bed reactors

3.3 Averaging over the catalyst particle

3.4 Dominant fluid–solid mass transfer

3.5 Dominant fluid–solid mass and heat transfer

3.6 Negligible mass and thermal dispersion

3.7 Conclusions

Nomenclature

Greek letters

References

CHAPTER 4: Fluidized‐bed catalytic reactors

4.1 Introduction

4.2 Key hydrodynamic features of gas‐fluidized beds

4.3 Key properties affecting reactor performance

4.4 Reactor modeling

4.5 Scale‐up, pilot testing, and practical issues

4.6 Concluding remarks

Nomenclature

Greek letters

References

PART 3: Three‐phase catalytic reactors

CHAPTER 5: Three‐phase fixed‐bed reactors

5.1 Introduction

5.2 Hydrodynamic aspects of three‐phase fixed‐bed reactors

5.3 Mass and heat transfer in three‐phase fixed‐bed reactors

5.4 Scale‐up and scale‐down of trickle‐bed reactors

5.5 Trickle‐bed reactor/bioreactor modeling

Nomenclature

Greek letters

Subscripts

Superscripts

Abbreviations

References

CHAPTER 6: Three‐phase slurry reactors

6.1 Introduction

6.2 Reactor design, scale‐up methodology, and reactor selection

6.3 Reactor models for design and scale‐up

6.4 Estimation of transport and hydrodynamic parameters

6.5 Advanced computational fluid dynamics (CFD)‐based models

6.6 Summary and closing remarks

Acknowledgments

Nomenclature

Greek letters

Subscripts

References

CHAPTER 7: Bioreactors

7.1 Introduction

7.2 Basic concepts, configurations, and modes of operation

7.3 Mass balances and reactor equations

7.4 Immobilized enzymes and cells

7.5 Aeration

7.6 Mixing

7.7 Heat transfer

7.8 Scale‐up

7.9 Bioreactors for animal cell cultures

7.10 Monitoring and control of bioreactors

Nomenclature

Greek letters

Subscripts

References

PART 4: Structured reactors

CHAPTER 8: Monolith reactors

8.1 Introduction

8.2 Design of wall‐coated monolith channels

8.3 Mapping and evaluation of operating regimes

8.4 Three‐phase processes

8.5 Conclusions

Nomenclature

Greek letters

Superscripts

Subscripts

References

CHAPTER 9: Microreactors for catalytic reactions

9.1 Introduction

9.2 Single‐phase catalytic microreactors

9.3 Multiphase microreactors

9.4 Conclusions and outlook

Nomenclature

Greek letters

Subscripts

References

PART 5: Essential tools of reactor modeling and design

CHAPTER 10: Experimental methods for the determination of parameters

10.1 Introduction

10.2 Consideration of kinetic objectives

10.3 Criteria for collecting kinetic data

10.4 Experimental methods

10.5 Microkinetic approach to kinetic analysis

10.6 TAP approach to kinetic analysis

10.7 Conclusions

References

CHAPTER 11: Numerical solution techniques

11.1 Techniques for the numerical solution of ordinary differential equations

11.2 Techniques for the numerical solution of partial differential equations

11.3 Computational fluid dynamics techniques

11.4 Case studies

11.5 Summary

Nomenclature

Greek letters

Subscripts/superscripts

References

PART 6: Industrial applications of multiphase reactors

CHAPTER 12: Reactor approaches for Fischer–Tropsch synthesis

12.1 Introduction

12.2 Reactors to 1950

12.3 1950–1985 period

12.4 1985 to present

12.5 The future?

References

CHAPTER 13: Hydrotreating of oil fractions

13.1 Introduction

13.2 The HDT process

13.3 Fundamentals of HDT

13.4 Process aspects of HDT

13.5 Reactor modeling and simulation

Nomenclature

Greek letters

Subscripts

Non‐SI units

References

CHAPTER 14: Catalytic reactors for fuel processing

14.1 Introduction—The basic reactions of fuel processing

14.2 Theoretical aspects, advantages, and drawbacks of fixed beds versus monoliths, microreactors, and membrane reactors

14.3 Reactor design and fabrication

14.4 Reformers

14.5 Water-gas shift reactors

14.6 Carbon monoxide fine cleanup: Preferential oxidation and selective methanation

14.7 Examples of complete fuel processors

Nomenclature

References

CHAPTER 15: Modeling of the catalytic deoxygenation of fatty acids in a packed bed reactor

15.1 Introduction

15.2 Experimental data for stearic acid deoxygenation

15.3 Assumptions

15.4 Model equations

15.5 Evaluation of the adsorption parameters

15.6 Particle diffusion study

15.7 Parameter sensitivity studies

15.8 Parameter identification studies

15.9 Studies concerning the deviation from ideal plug flow conditions

15.10 Parameter estimation results

15.11 Scale‐up considerations

15.12 Conclusions

Acknowledgments

Nomenclature

Greek letters

References

Index

End User License Agreement

List of Tables

Chapter 02

Table 2.1 Individual terms of LHHW rate equations for the surface reaction‐controlling cases of various catalytic reactions.

Chapter 03

Table 3.1 Fixed‐bed reactor mathematical model (definition of timescales

τ

in Table 3.2).

Table 3.2 Timescales of the different processes in the model for a fixed bed.

Chapter 04

Table 4.1 Some typical key characteristics of catalytic fluidized‐bed reactors compared with those of alternative types of reactor.

Table 4.2 Solid catalyzed gas‐phase reactions which have been carried out in commercial fluidized‐bed reactors.

Table 4.3 Typical operating ranges and features of catalytic fluidized‐bed reactors.

Table 4.4 Comparison of typical properties of catalytic and gas–solid fluidized‐bed reactors.

Table 4.5 Common instrumentation required in fluidized‐bed reactors.

Table 4.6 Complementary components of fluidized‐bed reactor system.

Chapter 05

Table 5.1 Model parameters.

Table 5.2 Values of kinetic parameters.

Table 5.3 Parameters used in simulations.

Table 5.4 Two‐bed reactor operating conditions.

Chapter 06

Table 6.1 Three‐phase catalytic reactors.

Table 6.2 Comparison of multiphase reactors (qualitative rating: more stars mean superior performance on the pertinent metric).

Table 6.3 Some illustrative applications of three‐phase slurry reactors.

Table 6.4 Overview of vessel designs and performance attributes of three‐phase slurry reactors.

Table 6.5 Idealized flow and axial dispersion models (steady state).

Table 6.6 Mixing cell model.

Table 6.7 Correlations for estimation of

k

l

a

in three‐phase slurry and fluidized beds.

Table 6.8 Liquid holdup, mass transfer coefficients, and effective interfacial area in gas–liquid reactors.

Table 6.9 Correlations for liquid dispersion coefficients in three‐phase slurry and three‐phase fluidized beds.

Table 6.10 Governing equations for Euler–Euler formulation.

Table 6.11 Turbulence closures.

Table 6.12 Closures for interphase momentum exchange.

Table 6.13 Closures for solid phase.

Chapter 08

Table 8.1 Monolith reactors classified according to flow, materials, and operation features.

Table 8.2 Typical dimensions and pressure drop in some monolith reactor processes [46].

Table 8.3 Friction factors and transfer coefficients for some common cross‐sectional shapes in monolith channels [39].

Table 8.4 Solution strategies for the Graetz–Lévêque problem with wall reaction.

Table 8.5 Bridging the gap between convection and diffusion regimes.

Table 8.6 Calculation of the effectiveness factor in uniform and nonuniform washcoats.

Table 8.7 Accuracy of effectiveness factor calculation methods for nonuniform geometry (circle‐in‐square shape with a first‐order reaction).

Table 8.8 Experimental ranges used in the development of empirical mass transfer correlations.

Table 8.9 Comparison between models for catalytic combustion in a monolith.

Table 8.10 Vertices in the Damköhler–Graetz plot with reaction–transport and profile development regimes.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!