136,99 €
* Provides a holistic approach to multiphase catalytic reactors from their modeling and design to their applications in industrial manufacturing of chemicals * Covers theoretical aspects and examples of fixed-bed, fluidized-bed, trickle-bed, slurry, monolith and microchannel reactors * Includes chapters covering experimental techniques and practical guidelines for lab-scale testing of multiphase reactors * Includes mathematical content focused on design equations and empirical relationships characterizing different multiphase reactor types together with an assortment of computational tools * Involves detailed coverage of multiphase reactor applications such as Fischer-Tropsch synthesis, fuel processing for fuel cells, hydrotreating of oil fractions and biofuels processing
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1285
Veröffentlichungsjahr: 2016
Cover
Title Page
List of contributors
Preface
PART 1: Principles of catalytic reaction engineering
CHAPTER 1: Catalytic reactor types and their industrial significance
1.1 Introduction
1.2 Reactors with fixed bed of catalysts
1.3 Reactors with moving bed of catalysts
1.4 Reactors without a catalyst bed
1.5 Summary
References
CHAPTER 2: Microkinetic analysis of heterogeneous catalytic systems
2.1 Heterogeneous catalytic systems
2.2 Intrinsic kinetics of heterogeneous reactions
2.3 External (interphase) transport processes
2.4 Internal (intraparticle) transport processes
2.5 Combination of external and internal transport effects
2.6 Summary
Nomenclature
Greek letters
References
PART 2: Two‐phase catalytic reactors
CHAPTER 3: Fixed‐bed gas–solid catalytic reactors
3.1 Introduction and outline
3.2 Modeling of fixed‐bed reactors
3.3 Averaging over the catalyst particle
3.4 Dominant fluid–solid mass transfer
3.5 Dominant fluid–solid mass and heat transfer
3.6 Negligible mass and thermal dispersion
3.7 Conclusions
Nomenclature
Greek letters
References
CHAPTER 4: Fluidized‐bed catalytic reactors
4.1 Introduction
4.2 Key hydrodynamic features of gas‐fluidized beds
4.3 Key properties affecting reactor performance
4.4 Reactor modeling
4.5 Scale‐up, pilot testing, and practical issues
4.6 Concluding remarks
Nomenclature
Greek letters
References
PART 3: Three‐phase catalytic reactors
CHAPTER 5: Three‐phase fixed‐bed reactors
5.1 Introduction
5.2 Hydrodynamic aspects of three‐phase fixed‐bed reactors
5.3 Mass and heat transfer in three‐phase fixed‐bed reactors
5.4 Scale‐up and scale‐down of trickle‐bed reactors
5.5 Trickle‐bed reactor/bioreactor modeling
Nomenclature
Greek letters
Subscripts
Superscripts
Abbreviations
References
CHAPTER 6: Three‐phase slurry reactors
6.1 Introduction
6.2 Reactor design, scale‐up methodology, and reactor selection
6.3 Reactor models for design and scale‐up
6.4 Estimation of transport and hydrodynamic parameters
6.5 Advanced computational fluid dynamics (CFD)‐based models
6.6 Summary and closing remarks
Acknowledgments
Nomenclature
Greek letters
Subscripts
References
CHAPTER 7: Bioreactors
7.1 Introduction
7.2 Basic concepts, configurations, and modes of operation
7.3 Mass balances and reactor equations
7.4 Immobilized enzymes and cells
7.5 Aeration
7.6 Mixing
7.7 Heat transfer
7.8 Scale‐up
7.9 Bioreactors for animal cell cultures
7.10 Monitoring and control of bioreactors
Nomenclature
Greek letters
Subscripts
References
PART 4: Structured reactors
CHAPTER 8: Monolith reactors
8.1 Introduction
8.2 Design of wall‐coated monolith channels
8.3 Mapping and evaluation of operating regimes
8.4 Three‐phase processes
8.5 Conclusions
Nomenclature
Greek letters
Superscripts
Subscripts
References
CHAPTER 9: Microreactors for catalytic reactions
9.1 Introduction
9.2 Single‐phase catalytic microreactors
9.3 Multiphase microreactors
9.4 Conclusions and outlook
Nomenclature
Greek letters
Subscripts
References
PART 5: Essential tools of reactor modeling and design
CHAPTER 10: Experimental methods for the determination of parameters
10.1 Introduction
10.2 Consideration of kinetic objectives
10.3 Criteria for collecting kinetic data
10.4 Experimental methods
10.5 Microkinetic approach to kinetic analysis
10.6 TAP approach to kinetic analysis
10.7 Conclusions
References
CHAPTER 11: Numerical solution techniques
11.1 Techniques for the numerical solution of ordinary differential equations
11.2 Techniques for the numerical solution of partial differential equations
11.3 Computational fluid dynamics techniques
11.4 Case studies
11.5 Summary
Nomenclature
Greek letters
Subscripts/superscripts
References
PART 6: Industrial applications of multiphase reactors
CHAPTER 12: Reactor approaches for Fischer–Tropsch synthesis
12.1 Introduction
12.2 Reactors to 1950
12.3 1950–1985 period
12.4 1985 to present
12.5 The future?
References
CHAPTER 13: Hydrotreating of oil fractions
13.1 Introduction
13.2 The HDT process
13.3 Fundamentals of HDT
13.4 Process aspects of HDT
13.5 Reactor modeling and simulation
Nomenclature
Greek letters
Subscripts
Non‐SI units
References
CHAPTER 14: Catalytic reactors for fuel processing
14.1 Introduction—The basic reactions of fuel processing
14.2 Theoretical aspects, advantages, and drawbacks of fixed beds versus monoliths, microreactors, and membrane reactors
14.3 Reactor design and fabrication
14.4 Reformers
14.5 Water-gas shift reactors
14.6 Carbon monoxide fine cleanup: Preferential oxidation and selective methanation
14.7 Examples of complete fuel processors
Nomenclature
References
CHAPTER 15: Modeling of the catalytic deoxygenation of fatty acids in a packed bed reactor
15.1 Introduction
15.2 Experimental data for stearic acid deoxygenation
15.3 Assumptions
15.4 Model equations
15.5 Evaluation of the adsorption parameters
15.6 Particle diffusion study
15.7 Parameter sensitivity studies
15.8 Parameter identification studies
15.9 Studies concerning the deviation from ideal plug flow conditions
15.10 Parameter estimation results
15.11 Scale‐up considerations
15.12 Conclusions
Acknowledgments
Nomenclature
Greek letters
References
Index
End User License Agreement
Chapter 02
Table 2.1 Individual terms of LHHW rate equations for the surface reaction‐controlling cases of various catalytic reactions.
Chapter 03
Table 3.1 Fixed‐bed reactor mathematical model (definition of timescales
τ
in Table 3.2).
Table 3.2 Timescales of the different processes in the model for a fixed bed.
Chapter 04
Table 4.1 Some typical key characteristics of catalytic fluidized‐bed reactors compared with those of alternative types of reactor.
Table 4.2 Solid catalyzed gas‐phase reactions which have been carried out in commercial fluidized‐bed reactors.
Table 4.3 Typical operating ranges and features of catalytic fluidized‐bed reactors.
Table 4.4 Comparison of typical properties of catalytic and gas–solid fluidized‐bed reactors.
Table 4.5 Common instrumentation required in fluidized‐bed reactors.
Table 4.6 Complementary components of fluidized‐bed reactor system.
Chapter 05
Table 5.1 Model parameters.
Table 5.2 Values of kinetic parameters.
Table 5.3 Parameters used in simulations.
Table 5.4 Two‐bed reactor operating conditions.
Chapter 06
Table 6.1 Three‐phase catalytic reactors.
Table 6.2 Comparison of multiphase reactors (qualitative rating: more stars mean superior performance on the pertinent metric).
Table 6.3 Some illustrative applications of three‐phase slurry reactors.
Table 6.4 Overview of vessel designs and performance attributes of three‐phase slurry reactors.
Table 6.5 Idealized flow and axial dispersion models (steady state).
Table 6.6 Mixing cell model.
Table 6.7 Correlations for estimation of
k
l
a
in three‐phase slurry and fluidized beds.
Table 6.8 Liquid holdup, mass transfer coefficients, and effective interfacial area in gas–liquid reactors.
Table 6.9 Correlations for liquid dispersion coefficients in three‐phase slurry and three‐phase fluidized beds.
Table 6.10 Governing equations for Euler–Euler formulation.
Table 6.11 Turbulence closures.
Table 6.12 Closures for interphase momentum exchange.
Table 6.13 Closures for solid phase.
Chapter 08
Table 8.1 Monolith reactors classified according to flow, materials, and operation features.
Table 8.2 Typical dimensions and pressure drop in some monolith reactor processes [46].
Table 8.3 Friction factors and transfer coefficients for some common cross‐sectional shapes in monolith channels [39].
Table 8.4 Solution strategies for the Graetz–Lévêque problem with wall reaction.
Table 8.5 Bridging the gap between convection and diffusion regimes.
Table 8.6 Calculation of the effectiveness factor in uniform and nonuniform washcoats.
Table 8.7 Accuracy of effectiveness factor calculation methods for nonuniform geometry (circle‐in‐square shape with a first‐order reaction).
Table 8.8 Experimental ranges used in the development of empirical mass transfer correlations.
Table 8.9 Comparison between models for catalytic combustion in a monolith.
Table 8.10 Vertices in the Damköhler–Graetz plot with reaction–transport and profile development regimes.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
