Natural Philosophy - Wilhelm Ostwald - E-Book

Natural Philosophy E-Book

Wilhelm Ostwald

0,0
1,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The laws of energy in the inorganic world and the laws of evolution in the organic world furnish mental instruments for a conceptual elaboration of the material provided by science, instruments capable not only of unifying present knowledge, but also of evoking the knowledge of the future.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



NATURAL PHILOSOPHY

BYWILHELM OSTWALD

TRANSLATEDBY THOMAS SELTZER

With the author's special revision for the American edition

NEW YORK HENRY HOLT AND COMPANY 1910

Copyright, 1910,BYHENRY HOLT AND COMPANY

Published November, 1910

THE QUINN & BODEN CO. PRESS RAHWAY N. J.

The original of this book was published as volume I in Reclam's Bücher der Naturwissenschaft.

PREFACE

The beginning of the twentieth century is marked by a sudden rise of interest in philosophy. This is especially manifest in the vast growth of philosophic literature. The present movement, it is noteworthy, is by no means a revival proceeding from the academic philosophy traditionally represented at the universities, but has rather the original character of natural philosophy. It owes its origin to the fact that after the specialization of the last half century, the synthetic factors of science are again vigorously asserting themselves. The need finally to consider all the numerous separate sciences from a general point of view and to find the connection between one's own activity and the work of mankind in its totality, must be regarded as the most prolific source of the present philosophic movement, just as it was the source of the natural philosophic endeavors a hundred years ago.

But while that old natural philosophy soon ended in a boundless sea of speculation, the present movement gives promise of permanent results, because it is built upon an extremely broad basis of experience. The laws of energy in the inorganic world and the laws of evolution in the organic world furnish mental instruments for a conceptual elaboration of the material provided by science, instruments capable not only of unifying present knowledge, but also of evoking the knowledge of the future. If it is not permissible to regard this unification as exhaustive and sufficient for all time, yet there is still so much left for us to do in working over the material we have on hand from the general points of view just mentioned, that the need for systematizing must be satisfied before we can turn our gaze upon things more remote.

The present work is meant to serve as the first aid and guide in the acquisition of these comprehensive notions of the external world and the inner life. It is not meant to develop or uphold a "system of philosophy." Through long experience as a teacher the writer has learned that those are the best pupils who soon go their own way. However, it is meant to uphold a certain method, that is, the scientific (or, if you will, the natural scientific), which takes its problems, and endeavors to solve its problems, from experience and for experience. If, as a result, several points of view arise that differ from those of the present day, and consequently demand a different attitude toward important matters in the immediate future, this very fact affords proof that our present natural philosophy does not lead away from life, but aims to form a part of our life, and has a right to.

CONTENTS

PAGEIntroduction1PART IGeneral Theory of Knowledge111.The Formation of Concepts112.Science133.The Aim of Science134.Concrete and Abstract165.The Subjective Part176.Empirical Concepts187.Simple and Complex Concepts198.The Conclusion249.The Natural Laws2810.The Law of Causation3111.The Purification of the Causal Relation3412.Induction3813.Deduction4014.Ideal Cases4415.The Determinateness of Things4716.The Freedom of the Will5017.The Classification of the Sciences5318.The Applied Sciences57PART IILogic, the Science of the Manifold, and Mathematics6119.The Most General Concept6120.Association6321.The Group6522.Negation6823.Artificial and Natural Groups6924.Arrangement of the Members7525.Numbers7826.Arithmetic, Algebra, and the Theory of Numbers7927.Co-ordination8028.Comparison8229.Numbers8530.Signs and Names8631.The Written Language8932.Pasigraphy and Sound Writing9233.Sound Writing9634.The Science of Language9735.Continuity10136.Measurement10737.The Function10938.The Application of the Functional Relation11239.The Law of Continuity11340.Time and Space11841.Recapitulation124PART IIIThe Physical Sciences12742.General12743.Mechanics12844.Kinetic Energy13245.Mass and Matter13646.Energetic Mechanics13847.The Mechanistic Theories14048.Complementary Branches of Mechanics14449.The Theory of Heat14750.The Second Fundamental Principle15051.Electricity and Magnetism15452.Light15653.Chemical Energy159PART IVThe Biologic Sciences16354.Life16355.The Storehouse of Free Energy16856.The Soul17157.Feeling, Thinking, Acting17458.Society17959.Language and Intercourse18260.Civilization184Index187

INTRODUCTION

Natural science and natural philosophy are not two provinces mutually exclusive of each other. They belong together. They are like two roads leading to the same goal. This goal is the domination of nature by man, which the various natural sciences reach by collecting all the individual actual relations between the natural phenomena, placing them in juxtaposition, and seeking to discover their interdependence, upon the basis of which one phenomenon may be foretold from another with more or less certainty. Natural philosophy accompanies these specialized labors and generalizations with similar labors and generalizations, only of a more universal nature. For instance, while the science of electricity, as a branch of physics, deals with the relation of electrical phenomena to one another and to phenomena in other branches of physics, natural philosophy is not only concerned with the question of the mutual connection of all physical relations, but also endeavors to include in the sphere of its study chemical, biological, astronomical, in short, all the known phenomena. In other words, natural philosophy is the most general branch of natural science.

Here two questions are usually asked. First, how can we define the boundary line between natural philosophy and the special sciences, since, obviously, sharp lines of demarcation are out of the question? Secondly, how can we investigate and teach natural philosophy, when it is impossible for any one person to master all the sciences completely, and so obtain a bird's-eye view of the general relations between all the branches of knowledge? To the beginner especially, who must first learn the various sciences, it seems quite hopeless to devote himself to a study that presupposes a command of them.

Since a discussion of the two questions will afford an excellent preliminary survey of the work in hand, it will be well to consider them in detail. In the first place, the lack of complete and precise boundary lines is a general characteristic of all natural things, and science is a natural thing. If, for instance, we try to differentiate sharply between physics and chemistry, we are met with the same difficulty. So also in biology if we try to settle beyond the shadow of a doubt the line of separation between the animal and the vegetable kingdoms.

If, despite this well-known impossibility, we consider the division of natural things into classes and orders as by no means useless and do not discard it, but regard it as an important scientific work, this is practical proof that such classification preserves its essential usefulness, even if it does not attain ideal definiteness. For, this imperfection notwithstanding, classification reaches its end, which is a comprehensive view, and thus a mastery, of the manifoldness of phenomena. For example, with the overwhelming majority of organic beings there is no doubt whether they are animals or plants. Similarly, most phenomena of inorganic nature can readily be designated as physical or chemical. For all such cases, therefore, the existing classification is good and useful. The few cases presenting difficulty may very well be considered by themselves wherever they occur, and we need merely take cognizance of them here. It follows from this, to be sure, that classification will be all the better fitted to its purpose the less frequently such doubtful cases arise, and that we have an interest in repeatedly testing existing classifications with a view to finding out if they cannot be supplanted by more suitable ones.

In these matters it is much the same as when we look upon the waves on the surface of a large body of water. Our first glance tells us that a number of waves are rolling there; and from a point giving us a sufficiently wide outlook, we can count them and gauge their width. But where is the line of division between one wave and the next? We undoubtedly see one wave following another, yet it is impossible for us to indicate precisely the end of one and the beginning of the next. Are we then to deduce that it is superfluous or unfeasible to designate the waves as different? By no means. On the contrary, in strictly scientific work we will endeavor to find some suitable definition of the boundary line between two consecutive waves. It may then be called an arbitrary line, and in a degree arbitrary it will certainly be. But to the investigator this does not matter. What concerns him is, if, with the help of this definition, wave lengths can be unequivocally determined, and if this is possible, he will use the definition as suitable to the purposes of science, without dismissing from his mind the idea that possibly some other definition may provide an even easier or sharper determination. Such an one he would instantly prefer to the old one.

Thus we see that these questions of classification are not questions of the so-called "essence" of the thing, but pertain merely to purely practical arrangements for an easier and more successful mastery of scientific problems. This is an extremely important point of view, much more far-reaching than is apparent here at its first application.

As to the second objection, I will admit its validity. But here, too, we have a phenomenon appearing in all branches and forms of science. Therefore we must familiarize ourselves with it in advance. Science was created by man for man's purposes, and, consequently, like all human achievements, possesses the indestructible quality of imperfection. But the mere fact that a successful working science exists, with the help of which human life has been fundamentally modified, signifies that the quality of incompleteness in human learning is no hindrance to its efficiency. For what science has once worked out always contains a portion of truth, hence a portion of efficiency. The old corpuscular theory of light, which now seems so childishly incomplete to us, was adequate, none the less, for satisfactorily explaining the phenomena of reflection and refraction, and the finest telescopes have been built with its help. This is due to the true elements in it, which taught us correctly to calculate the direction of rays of light in reflection and refraction. The rest was merely an arbitrary accessory which had to fall when new, contradictory facts were discovered. These facts could not have been taken into consideration when the theory was propounded, because they were not yet known. But when the corpuscular theory of light was replaced by the theory of waves of an elastic ether, geometric optics at first remained quite unchanged, because the theory of straight lines of rays could be deduced from the new views also, though not so easily and smoothly. And geometric optics was then concerned with nothing but these straight lines, in no wise with the question of their propagation. It did not become clear until recently that this conception of straight lines of rays is incomplete, though, it is true, it made a first approach toward the presentation of actual phenomena. It fails when it comes to characterize the behavior of a pencil of rays of large aperture. The old idea of a straight line of rays was to be replaced by a more complex concept with more varied characteristics, namely, the wave-surface. The greater variety of this concept renders possible the presentation of the greater variety of the optical phenomena just mentioned. And from it proceed the very considerable advances that have been made, since the new theory was propounded, in optical instruments, especially the microscope and the photographic objective, for the purposes of which pencils of rays of large aperture are required. The astronomic objective with its small angle of aperture has not undergone particularly important improvements.

Experience in every province of science is the same as in this. Science is not like a chain which snaps when only a single link proves to be weak. It is like a tree, or, better still, like a forest, in which all sorts of changes or ravages go on without causing the whole to pass out of existence or cease to be active. The relations between the various phenomena, once they become known, continue to exist as indestructible components of all future science. It may come to pass, in fact, does come to pass very frequently, that the form in which those relations were first expressed prove to be imperfect, and that the relations cannot be maintained quite generally. It turns out that they are subjected to other influences which change them because they had been unknown, and which could not have been taken into consideration at the discovery and first formulation of these relations. But no matter what changes science may undergo, a certain residue of that first knowledge will remain and never be lost. In this sense, a truth that science has once gained has life eternal, that is, it will exist as long as human science exists.

Applying this general notion to our case, we have the following. How far and how generally at any given time the relations of the various phenomena are summed up in fixed forms, that is, in natural laws, will depend upon the stage attained by each of the special sciences. But since science has been in existence it has yielded a certain number of such general laws, and these, though they have been filed down a good deal in form and expression, and have undergone many corrections as to the limits of their application, nevertheless have preserved their essence, since they began their existence in the brains of human investigators. The net of the relations of phenomena grows ever wider and more diversified, but its chief features persist.

The same is true of an individual. No matter how limited the circle of his knowledge, it is a part of the great net, and therefore possesses the quality by virtue of which the other parts readily join it as soon as they reach the consciousness and knowledge of the individual. The man who thus enters the realm of science acquires advantages which may be compared to those of a telephone in his residence. If he wishes to, he may be connected with everybody else, though he will make extremely limited use of his privilege, since he will try to reach only those with whom he has personal relations. But once such relations have been established, the possibility of telephone communication is simultaneously and automatically established. Similarly, every bit of knowledge that the individual appropriates will prove to be a regular part of the central organization, the entire extent of which he can never cover, though each individual part has been made accessible to him, provided he wants to take cognizance of it.

The mere beginner in learning, therefore, when receiving the most elementary instruction in school, or from his parents, or even from his personal experiences in his surroundings, is grasping one or more threads of the mighty net, and can grope his way farther along it in order to draw an increasing area of it into his life and the field of his activity. And this net has the valuable, even precious quality of being the same that joins the greatest and most comprehensive intellects in mankind to one another. The truths a man has once grasped he need never learn afresh so far as their actual content is concerned, though not infrequently—especially in newer sciences—he may have to see the form of their presentation and generalization change. For this reason it is of such especial importance for each individual from the first to perceive these unalterable facts and realize that they are unalterable and learn to distinguish them from the alterable forms of their presentation. It is in this very regard that the incompleteness of human knowledge is most clearly revealed. Time and again in the history of science form has been taken for content, and necessary changes of form—a merely practical question—have been confused with revolutionary modifications of the content.

Thus, each presentation of a science has its natural philosophic portion. In text-books, whether elementary or advanced, the chapter on natural philosophy is found usually at the beginning of the book, sometimes at the end, in the form of a "general introduction," or "general summary." In the special works in which the latest advances of science are made known by the investigators, the natural philosophic portions are usually to be found in the form of theses, of principles, which are not discussed, often not even explicitly stated, but upon the acceptance of which depend all the special conclusions that are drawn, in the case in hand, from the new facts or thoughts imparted. Whether at the beginning or at the end of the book, these most general principles do not quite occupy the place that befits them. If at the introduction of the text-book, they are practically devoid of content, since the facts they are meant to summarize are yet to be unfolded in the course of the presentation. If at the end, they come too late, since they have already been applied in numerous instances, though without reference to their general nature. The best method is—and a good teacher always employs this method, whether in the spoken or the written word—to let the generalizations come whenever the individual facts imparted require and justify them.

Thus, all instruction in natural sciences is necessarily interspersed with natural philosophy, good or bad, according to the clearheadedness of the teacher. If we wish to obtain a perfect survey of a complex structure, as, for instance, the confusion of streets in a large city, we had better not try to know each street, but study a general plan, from which we learn the comparative situation of the streets. So it is well for us in studying a special science to look at our general plan, if for no other reason than to keep from losing our way when it may chance to lead through a quarter hitherto unknown. This is the purpose of the present work.

PART I GENERAL THEORY OF KNOWLEDGE

1. The Formation of Concepts.

To the human mind, as it slowly awakens in every child, the world at first seems a chaos consisting of mere individual experiences. The only connection between them is that they follow each other consecutively. Of these experiences, all of which at first are different from one another, certain parts come to be distinguished by the fact that they are repeated more frequently, and therefore receive a special character, that of being familiar. The familiarity is due to our recalling a former similar experience; in other words, to our feeling that there is a relation between the present experience and certain former experiences. The cause of this phenomenon, which is at the basis of all mental life, is a quality common to all living things, and manifesting itself in all their functions, while appearing but rarely or accidentally in inorganic nature. It is the quality by virtue of which the oftener any process has taken place in a living organism the more easily it is repeated. Here is not yet the place to show how almost all the characteristic qualities of living beings, from the preservation of the species to the highest intellectual accomplishments, are conditioned by this special peculiarity. Suffice it to say that because of this quality all those processes which are repeated frequently in any given living organism, assume spontaneously, that is, from physiologic reasons, a character distinguishing them essentially from those which appear only in isolated instances, or sporadically.

If a living being is equipped with consciousness and thought, like man, then the conscious recollections of such uniform experiences form the enduring or permanent part in the sum-total of his experiences. Each time a complex event, like the change of seasons, for example, which we know from experience repeats itself—each time a part of such an event reaches our consciousness, we are prepared also for the other parts that experience teaches are connected with it. This makes it possible for us to foresee future events. What significance the foreseeing of future events has for the preservation and the development of the individual as well as the species can only be indicated here. To give one instance, it is our ability to foretell the coming of winter with the impossibility of obtaining food directly during the winter that causes us to refrain from at once using up all the food we have and to preserve it for the day of need. The ability to foretell, therefore, becomes the foundation of the whole structure of economic life.

2. Science.

The prophecy of future events based upon the knowledge of the details of recurring events is called science in its most general sense. Here, as in most cases in which language became fixed long before men had a clear knowledge of the things designated, the name of the thing is easily associated with false ideas arising either from errors that had been overcome or from other, still more accidental, causes. Thus, the mere knowledge of past events is also called science without any thought of its use for prophesying future events. Yet a moment's reflection teaches that mere knowledge of the past which is not meant to, or cannot, serve as a basis for shaping the future is utterly aimless knowledge, and must take its place with other aimless activities called play. There are all sorts of plays requiring great acumen and patient application, as for example the game of chess; and no one has the right to prevent any individual from pursuing such games. But the player for his part must not demand special regard for his activity. By using his energies for his personal pleasure and not for a social purpose, that is, for a general human purpose, he loses every claim to the social encouragement of his activity, and must be content if only his individual rights are respected; and that, too, only so long as the social interests do not suffer by it.

3. The Aim of Science.

These views are deliberately opposed to a very widespread idea that science should be cultivated "for its own sake," and not for the sake of the benefits it actually brings or may be made to bring. We reply that there is nothing at all which is done merely "for its own sake." Everything, without exception, is done for human purposes. These purposes range from momentary personal satisfaction to the most comprehensive social services involving disregard of one's own person. But in all our actions we never get beyond the sphere of the human. If, therefore, the phrase "for its own sake" means anything, it means that science should be followed for the sake of the immediate pleasure it affords, that is to say, as play (as we have just characterized it), and in the "for-its-own-sake" demand there is hidden a misunderstood idealism, which, on closer inspection, resolves itself into its very opposite, the degradation of science.

The element of truth hidden in that misunderstood phrase is, that in a higher state of culture it is found better to disregard the immediate technical application in the pursuit of science, and to aim only for the greatest possible perfection and depth in the solution of its individual problems. Whether this is the correct method of procedure and when it is so, is solely a question of the general state of culture. In the early stages of human civilization such a demand is utterly meaningless, and all science is necessarily and naturally confined to immediate life. But the wider and more complex human relations become, the wider and surer must the ability to predict future events become. Then it is the function of prophesying science to have answers ready for questions which as yet have not become pressing, but which with further development may sooner or later become so.

In the net-like interlacing of the sciences, that is, of the various fields of knowledge, described in the introduction, we must always reckon with the fact that our anticipation of what kind of knowledge we shall next need must always remain very incomplete. It is possible to foresee future needs in general outline with more or less certainty, but it is impossible to be prepared for particular individual cases which lie on the border line of such anticipation, and which may sometimes become of the utmost importance and urgency. Therefore it is one of the most important functions of science to achieve as perfect an elaboration as possible of all the relations conceivable, and in this practical necessity lies the foundation of the general or theoretical elaboration of science.

The Science of Concepts. Here the question immediately arises: how can we secure such perfection? The answer to this general preliminary question of all the sciences belongs to the sphere of the first or the most general of all the sciences, a knowledge of which is presupposed for the pursuit of the other sciences. Since its foundation by the Greek philosopher Aristotle it has borne the name of logic, which name, etymologically speaking, hints suspiciously at the word, and the word, as is known, steps in where ideas are wanting. Here, however, we have to deal with the very science of ideas, to which language bears the relation only of a means—and often an inadequate means—to an end. We have already seen how, through the physiologic fact of memory, experiences are found in our consciousness which are similar, that is, partially coinciding with one another. These coinciding parts are those concerning which we can make predictions, for the very reason that they coincide in every single instance, and they alone, therefore, constitute that part of our experience which bears results and hence has significance.

4. Concrete and Abstract.

Such coinciding or repeated parts of similar experiences we call, as already stated, concepts. But here, too, attention must immediately be drawn to a linguistic imperfection, which consists in the fact that in such a group of coinciding experiences we designate by the same name both the isolated experience or the object of a special experience and the totality of all the coinciding experiences; in other words, all the similar experiences. Thus, horse means, on the one hand, quite a definite thing which for the moment forms an object of our experience, and, on the other, the totality of all possible similar objects which have been present in our former experiences, and which we shall meet in our future experiences. It is true that these two sorts of contents of consciousness bearing the same name are distinguished also as concrete and abstract, and there is an inclination to attribute "reality" only to the first, while the other, as "mere entities in thought," are relegated to a lesser degree of reality. As a matter of fact, the difference, though important, is of quite another kind. It is the difference between the momentary experience, as opposed to the totality of the corresponding memories and expectations. Hence not so much a difference in reality as in presence. However, our observations have already made it apparent that presence alone never yields knowledge. A necessary part of knowledge is the memory of former similar experiences. For without such memory and the corresponding comparison, it is quite impossible for us to get at those things which agree and which, therefore, may be predicted; and we should stand before every one of our experiences with the helplessness of a new-born babe.[A]

5. The Subjective Part.

We shall therefore have to recognize realities in abstract ideas in so far as they must rest upon some experiences to be at all intelligible to us. Since the formation of concepts depends upon memories, and these may refer, according to the individual, to very different parts of the same experience of different individuals, concepts always possess an element dependent upon the individual, or a subjective element. This, however, does not consist in the addition by the individual of new parts not found in the experience, but, on the contrary, in the different choice out of what is found in the experience. If every individual absorbed all parts of the experience, the individual, or subjective, differences would disappear. And since scientific experience endeavors to make the absorption of experiences as complete as possible, it aims nearer and nearer to this ideal by seeking to equalize the subjective deficiency of the individual memory through the collocation of as many and as various memories as possible, thus filling in the subjective gaps in experience as far as possible and rendering them harmless.