139,99 €
A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors.
It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 1027
Veröffentlichungsjahr: 2015
Cover
Wiley Series
Title Page
Copyright
About the Author
Series Preface
Wiley Series in Materials for Electronic and Optoelectronic Applications
Preface
Acknowledgment
List of Tables
Nomenclature
Chapter 1: Brief History of Superconductivity
1.1 Introduction
1.2 Milestones in the Field of Superconductivity
References
Chapter 2: The Superconducting State
2.1 Introduction
2.2 Electrical Resistance
2.3 Characteristic Properties of Superconductors
2.4 Superconductor Electrodynamics
2.5 Thermodynamics of Superconductors
References
Chapter 3: Superconductivity: A Macroscopic Quantum Phenomenon
3.1 Introduction
3.2 BCS Theory of Superconductivity
3.3 Tunneling Effects
References
Chapter 4: Type II Superconductors
4.1 Introduction
4.2 The Ginzburg–Landau Theory
4.3 Magnetic Behavior of Type I and Type II Superconductors
4.4 Critical Current Densities of Type I and Type II Superconductors
4.5 Anisotropic Superconductors
References
Chapter 5: Cuprate Superconductors: An Overview
5.1 Introduction
5.2 Families of Superconductive Cuprates
5.3 Variation of Charge Carrier Density (Doping)
5.4 Summary
References
Chapter 6: Crystal Structures of Cuprate Superconductors
6.1 Introduction
6.2 Diffraction Methods
6.3 Crystal Structures of the Cuprate High-Temperature Superconductors
References
Chapter 7: Empirical Rules for the Critical Temperature
7.1 Introduction
7.2 Relations between Charge Carrier Density and Critical Temperature
7.3 Effect of the Number of CuO
2
Planes in the Copper Oxide Blocks
7.4 Effect of Pressure on the Critical Temperature
7.5 Summary
References
Chapter 8: Generic Phase Diagram of Cuprate Superconductors
8.1 Introduction
8.2 Generic Phase Diagram of Hole-Doped Cuprate Superconductors
8.3 Summary
References
Chapter 9: Superconducting Properties of Cuprate High-Tc Superconductors
9.1 Introduction
9.2 Characteristic Length Scales
9.3 Superconducting Energy Gap
9.4 Magnetic Phase Diagram and Irreversibility Line
9.5 Critical Current Densities in Cuprate Superconductors
9.6 Grain-Boundary Weak Links
9.7 Summary
References
Chapter 10: Flux Pinning in Cuprate High-Tc Superconductors
10.1 Introduction
10.2 Vortex Lattice
10.3 Consequences of Anisotropy and Intrinsic Pinning
10.4 Thermally Activated Flux Creep
10.5 Irreversibility Lines
10.6 Summary
References
Chapter 11: Transport Properties
11.1 Introduction
11.2 Normal-State Resistivity
11.3 Thermal Conductivity
11.4 Summary
References
Chapter 12: Thermoelectric and Thermomagnetic Effects
12.1 Introduction
12.2 Thermoelectric Power of Cuprate Superconductors
12.3 Nernst Effect
12.4 Summary
References
Chapter 13: Specific Heat
13.1 Introduction
13.2 Specific Heat at Low Temperatures
13.3 Specific Heat Jump at the Transition to Superconductivity
13.4 Specific Heat Data up to Room Temperature
13.5 Summary
References
Chapter 14: Powder Synthesis and Bulk Cuprate Superconductors
14.1 Introduction
14.2 Synthesis of Cuprate Superconductor Powders
14.3 Bulk Cuprate High-
T
c
Superconductors
14.4 Summary
References
Chapter 15: First- and Second-Generation High-Temperature Superconductor Wires
15.1 Introduction
15.2 First-Generation High-
T
c
Superconductor Wires and Tapes
15.3 Second-Generation of High-
T
c
Superconductor Tapes
References
Chapter 16: Cuprate Superconductor Films
16.1 Introduction
16.2 Film Deposition Techniques
16.3 Multilayers of Ultrathin Films
16.4 Strain Effects
16.5 Summary
References
Chapter 17: MgB2 – An Intermediate-Temperature Superconductor
17.1 Introduction
17.2 Physical Properties of MgB
2
17.3 MgB
2
Wires and Tapes
17.4 MgB
2
Bulk Material
17.5 MgB
2
Films
17.6 Summary
References
Chapter 18: Iron-Based Superconductors – A New Class of High-Temperature Superconductors
18.1 Introduction
18.2 Critical Temperatures of Iron-based Superconductors
18.3 Crystal Structures of Iron-based Superconductors
18.4 Physical Properties of Iron-based Superconductors
18.5 Synthesis of Iron-based Superconductors
18.6 Critical Current Densities in Iron-based Superconductors
18.7 Summary
References
Chapter 19: Outlook
19.1 Introduction
19.2 The Investigation of Physical Properties
19.3 Conductor Development
19.4 Magnet and Power Applications
References
Author Index
Subject Index
End User License Agreement
xi
xiii
xv
xvi
xvii
xix
xx
xxi
xxiii
xxiv
xxv
xxvi
xxvii
xxviii
xxix
xxx
1
2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
501
502
503
504
505
506
507
508
509
510
511
512
513
Cover
Table of Contents
Preface
Begin Reading
Chapter 1: Brief History of Superconductivity
Figure 1.1 Resistance vs. temperature plot obtained for mercury by Kammerlingh Onnes
Figure 1.2 Map of the highest known critical temperatures in different classes of superconducting materials. Panel (a): metals and molecular superconductors [2, 5, 7, 15–18, 21, 24, 29, 31–37]. Panel (b): HTSs (cuprates and iron-based superconductors) [19, 20, 22, 23, 25, 38–51]
Figure 1.3 The reciprocal value of the Carnot efficiency as a function of the operation temperature indicates that for the removal of a heat load of 1 W at an operation temperature of 4.2 K a power of W is required, while this power is only 2.9 W at an operation temperature of 77 K
Chapter 2: The Superconducting State
Figure 2.1 Energy E of free electrons in a one-dimensional lattice versus wave number k; a is the lattice constant
Figure 2.2 Fermi–Dirac distribution for low and high temperatures
Figure 2.3 Density of states and occupation of the energy states for a free electron gas
Figure 2.4 Energy versus wave number k for electrons in a one-dimensional periodic potential. The energy gaps at the boundaries of the Brillouin zones lead to the band structure shown on the right
Figure 2.5 Schematic illustration of the band structures of insulators, pure semiconductors, and metals
Figure 2.6 Occupation of energy states in a one-dimensional metal for (left) and an electric field applied in the –x direction (right)
Figure 2.7 Resistivity of copper for RRR-values of 10, 30, and 100. At very low temperatures, the intrinsic resistivity due to the electron–phonon interaction approaches zero ( data from [2])
Figure 2.8 Resistance versus temperature for a low-temperature superconductor
Figure 2.9 Resistance versus temperature curves of a single- and a multiphase high-temperature superconductor
Figure 2.10 Resistance versus temperature for a Ag/Bi-2212 multicore wire. The -values resulting from different definitions of the critical temperature are indicated
Figure 2.11 The magnetic flux is excluded from the interior of a superconductor without field-cooling (left) as well as with it (center). In contrast to this behavior, a magnetic flux would exist in the interior of a field-cooled perfect conductor (right)
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!