Physical Properties of High-Temperature Superconductors - Rainer Wesche - E-Book

Physical Properties of High-Temperature Superconductors E-Book

Rainer Wesche

0,0
139,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. 

It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties   This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1027

Veröffentlichungsjahr: 2015

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Cover

Wiley Series

Title Page

Copyright

About the Author

Series Preface

Wiley Series in Materials for Electronic and Optoelectronic Applications

Preface

Acknowledgment

List of Tables

Nomenclature

Chapter 1: Brief History of Superconductivity

1.1 Introduction

1.2 Milestones in the Field of Superconductivity

References

Chapter 2: The Superconducting State

2.1 Introduction

2.2 Electrical Resistance

2.3 Characteristic Properties of Superconductors

2.4 Superconductor Electrodynamics

2.5 Thermodynamics of Superconductors

References

Chapter 3: Superconductivity: A Macroscopic Quantum Phenomenon

3.1 Introduction

3.2 BCS Theory of Superconductivity

3.3 Tunneling Effects

References

Chapter 4: Type II Superconductors

4.1 Introduction

4.2 The Ginzburg–Landau Theory

4.3 Magnetic Behavior of Type I and Type II Superconductors

4.4 Critical Current Densities of Type I and Type II Superconductors

4.5 Anisotropic Superconductors

References

Chapter 5: Cuprate Superconductors: An Overview

5.1 Introduction

5.2 Families of Superconductive Cuprates

5.3 Variation of Charge Carrier Density (Doping)

5.4 Summary

References

Chapter 6: Crystal Structures of Cuprate Superconductors

6.1 Introduction

6.2 Diffraction Methods

6.3 Crystal Structures of the Cuprate High-Temperature Superconductors

References

Chapter 7: Empirical Rules for the Critical Temperature

7.1 Introduction

7.2 Relations between Charge Carrier Density and Critical Temperature

7.3 Effect of the Number of CuO

2

Planes in the Copper Oxide Blocks

7.4 Effect of Pressure on the Critical Temperature

7.5 Summary

References

Chapter 8: Generic Phase Diagram of Cuprate Superconductors

8.1 Introduction

8.2 Generic Phase Diagram of Hole-Doped Cuprate Superconductors

8.3 Summary

References

Chapter 9: Superconducting Properties of Cuprate High-Tc Superconductors

9.1 Introduction

9.2 Characteristic Length Scales

9.3 Superconducting Energy Gap

9.4 Magnetic Phase Diagram and Irreversibility Line

9.5 Critical Current Densities in Cuprate Superconductors

9.6 Grain-Boundary Weak Links

9.7 Summary

References

Chapter 10: Flux Pinning in Cuprate High-Tc Superconductors

10.1 Introduction

10.2 Vortex Lattice

10.3 Consequences of Anisotropy and Intrinsic Pinning

10.4 Thermally Activated Flux Creep

10.5 Irreversibility Lines

10.6 Summary

References

Chapter 11: Transport Properties

11.1 Introduction

11.2 Normal-State Resistivity

11.3 Thermal Conductivity

11.4 Summary

References

Chapter 12: Thermoelectric and Thermomagnetic Effects

12.1 Introduction

12.2 Thermoelectric Power of Cuprate Superconductors

12.3 Nernst Effect

12.4 Summary

References

Chapter 13: Specific Heat

13.1 Introduction

13.2 Specific Heat at Low Temperatures

13.3 Specific Heat Jump at the Transition to Superconductivity

13.4 Specific Heat Data up to Room Temperature

13.5 Summary

References

Chapter 14: Powder Synthesis and Bulk Cuprate Superconductors

14.1 Introduction

14.2 Synthesis of Cuprate Superconductor Powders

14.3 Bulk Cuprate High-

T

c

Superconductors

14.4 Summary

References

Chapter 15: First- and Second-Generation High-Temperature Superconductor Wires

15.1 Introduction

15.2 First-Generation High-

T

c

Superconductor Wires and Tapes

15.3 Second-Generation of High-

T

c

Superconductor Tapes

References

Chapter 16: Cuprate Superconductor Films

16.1 Introduction

16.2 Film Deposition Techniques

16.3 Multilayers of Ultrathin Films

16.4 Strain Effects

16.5 Summary

References

Chapter 17: MgB2 – An Intermediate-Temperature Superconductor

17.1 Introduction

17.2 Physical Properties of MgB

2

17.3 MgB

2

Wires and Tapes

17.4 MgB

2

Bulk Material

17.5 MgB

2

Films

17.6 Summary

References

Chapter 18: Iron-Based Superconductors – A New Class of High-Temperature Superconductors

18.1 Introduction

18.2 Critical Temperatures of Iron-based Superconductors

18.3 Crystal Structures of Iron-based Superconductors

18.4 Physical Properties of Iron-based Superconductors

18.5 Synthesis of Iron-based Superconductors

18.6 Critical Current Densities in Iron-based Superconductors

18.7 Summary

References

Chapter 19: Outlook

19.1 Introduction

19.2 The Investigation of Physical Properties

19.3 Conductor Development

19.4 Magnet and Power Applications

References

Author Index

Subject Index

End User License Agreement

Pages

xi

xiii

xv

xvi

xvii

xix

xx

xxi

xxiii

xxiv

xxv

xxvi

xxvii

xxviii

xxix

xxx

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

501

502

503

504

505

506

507

508

509

510

511

512

513

Guide

Cover

Table of Contents

Preface

Begin Reading

List of Illustrations

Chapter 1: Brief History of Superconductivity

Figure 1.1 Resistance vs. temperature plot obtained for mercury by Kammerlingh Onnes

Figure 1.2 Map of the highest known critical temperatures in different classes of superconducting materials. Panel (a): metals and molecular superconductors [2, 5, 7, 15–18, 21, 24, 29, 31–37]. Panel (b): HTSs (cuprates and iron-based superconductors) [19, 20, 22, 23, 25, 38–51]

Figure 1.3 The reciprocal value of the Carnot efficiency as a function of the operation temperature indicates that for the removal of a heat load of 1 W at an operation temperature of 4.2 K a power of W is required, while this power is only 2.9 W at an operation temperature of 77 K

Chapter 2: The Superconducting State

Figure 2.1 Energy E of free electrons in a one-dimensional lattice versus wave number k; a is the lattice constant

Figure 2.2 Fermi–Dirac distribution for low and high temperatures

Figure 2.3 Density of states and occupation of the energy states for a free electron gas

Figure 2.4 Energy versus wave number k for electrons in a one-dimensional periodic potential. The energy gaps at the boundaries of the Brillouin zones lead to the band structure shown on the right

Figure 2.5 Schematic illustration of the band structures of insulators, pure semiconductors, and metals

Figure 2.6 Occupation of energy states in a one-dimensional metal for (left) and an electric field applied in the –x direction (right)

Figure 2.7 Resistivity of copper for RRR-values of 10, 30, and 100. At very low temperatures, the intrinsic resistivity due to the electron–phonon interaction approaches zero ( data from [2])

Figure 2.8 Resistance versus temperature for a low-temperature superconductor

Figure 2.9 Resistance versus temperature curves of a single- and a multiphase high-temperature superconductor

Figure 2.10 Resistance versus temperature for a Ag/Bi-2212 multicore wire. The -values resulting from different definitions of the critical temperature are indicated

Figure 2.11 The magnetic flux is excluded from the interior of a superconductor without field-cooling (left) as well as with it (center). In contrast to this behavior, a magnetic flux would exist in the interior of a field-cooled perfect conductor (right)

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!