The Duffing Equation - Ivana Kovacic - E-Book

The Duffing Equation E-Book

Ivana Kovacic

0,0
123,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The Duffing Equation: Nonlinear Oscillators and their Behaviour brings together the results of a wealth of disseminated research literature on the Duffing equation, a key engineering model with a vast number of applications in science and engineering, summarizing the findings of this research. Each chapter is written by an expert contributor in the field of nonlinear dynamics and addresses a different form of the equation, relating it to various oscillatory problems and clearly linking the problem with the mathematics that describe it. The editors and the contributors explain the mathematical techniques required to study nonlinear dynamics, helping the reader with little mathematical background to understand the text. The Duffing Equation provides a reference text for postgraduate and students and researchers of mechanical engineering and vibration / nonlinear dynamics as well as a useful tool for practising mechanical engineers. * Includes a chapter devoted to historical background on Georg Duffing and the equation that was named after him. * Includes a chapter solely devoted to practical examples of systems whose dynamic behaviour is described by the Duffing equation. * Contains a comprehensive treatment of the various forms of the Duffing equation. * Uses experimental, analytical and numerical methods as well as concepts of nonlinear dynamics to treat the physical systems in a unified way.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 503

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Cover

Title Page

Copyright

List of Contributors

Preface

Chapter 1: Background: On Georg Duffing and the Duffing Equation

1.1 Introduction

1.2 Historical Perspective

1.3 A Brief Biography of Georg Duffing

1.4 The Work of Georg Duffing

1.5 Contents of Duffing's Book

1.6 Research Inspired by Duffing's Work

1.7 Some Other Books on Nonlinear Dynamics

1.8 Overview of This Book

References

Chapter 2: Examples of Physical Systems Described by the Duffing Equation

2.1 Introduction

2.2 Nonlinear Stiffness

2.3 The Pendulum

2.4 Example of Geometrical Nonlinearity

2.5 A System Consisting of the Pendulum and Nonlinear Stiffness

2.6 Snap-Through Mechanism

2.7 Nonlinear Isolator

2.8 Large Deflection of a Beam With Nonlinear Stiffness

2.9 Beam with Nonlinear Stiffness Due to Inplane Tension

2.10 Nonlinear Cable Vibrations

2.11 Nonlinear Electrical Circuit

2.12 Summary

References

Chapter 3: Free Vibration of a Duffing Oscillator with Viscous Damping

3.1 Introduction

3.2 Fixed Points and Their Stability

3.3 Local Bifurcation Analysis

3.4 Global Analysis for Softening Nonlinear Stiffness (γ<0)

3.5 Global Analysis for Hardening Nonlinear Stiffness (γ>0)

3.6 Summary

Acknowledgments

References

Chapter 4: Analysis Techniques for the Various Forms of the Duffing Equation

4.1 Introduction

4.2 Exact Solution for Free Oscillations of the Duffing Equation with Cubic Nonlinearity

4.3 The Elliptic Harmonic Balance Method

4.4 The Elliptic Galerkin Method

4.5 The Straightforward Expansion Method

4.6 The Elliptic Lindstedt–Poincaré Method

4.7 Averaging Methods

4.8 Elliptic Homotopy Methods

4.9 Summary

References

Appendix 4AI: Jacobi Elliptic Functions and Elliptic Integrals

Appendix 4AII: The Best L2 Norm Approximation

Chapter 5: Forced Harmonic Vibration of a Duffing Oscillator with Linear Viscous Damping

5.1 Introduction

5.2 Free and Forced Responses of the Linear Oscillator

5.3 Amplitude and Phase Responses of the Duffing oscillator

5.4 Periodic Solutions, Poincaré sections, and bifurcations

5.5 Global Dynamics

5.6 Summary

References

Chapter 6: Forced Harmonic Vibration of a Duffing Oscillator with Different Damping Mechanisms

6.1 Introduction

6.2 Classification of Nonlinear Characteristics

6.3 Harmonically Excited Duffing Oscillator with Generalised Damping

6.4 Viscous Damping

6.5 Nonlinear Damping in a Hardening System

6.6 Nonlinear Damping in a Softening System

6.7 Nonlinear Damping in a Double-Well Potential Oscillator

6.8 Summary

Acknowledgments

References

Chapter 7: Forced Harmonic Vibration in a Duffing Oscillator with Negative Linear Stiffness and Linear Viscous Damping

7.1 Introduction

7.2 Literature Survey

7.3 Dynamics of Conservative and Nonconservative Systems

7.4 Nonlinear Periodic Oscillations

7.5 Transition to Complex Response

7.6 Nonclassical Analyses

7.7 Summary

References

Chapter 8: Forced Harmonic Vibration of an Asymmetric Duffing Oscillator

8.1 Introduction

8.2 Models of the Systems Under Consideration

8.3 Regular Response of the Pure Cubic Oscillator

8.4 Regular Response of the Single-Well Helmholtz–Duffing Oscillator

8.5 Chaotic Response of the Pure Cubic Oscillator

8.6 Chaotic Response of the Single-Well Helmholtz–Duffing Oscillator

8.7 Summary

References

Appendix: Translation of Sections from Duffing's Original Book

Glossary

References

Index

Index

This edition first published 2011

© 2011 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

The Duffing equation : nonlinear oscillators and their phenomena / edited by Ivana Kovacic, Michael J. Brennan.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-71549-9 (cloth)

1. Duffing equations. 2. Nonlinear oscillators–Mathematical models. I. Kovacic, Ivana, 1972- II. Brennan, Michael J. (Michael John), 1956-

QA372.D83 2011

5150'35–dc22

2010034587

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470715499

E-PDF ISBN: 9780470977866

O-book ISBN: 9780470977859

E-Pub ISBN: 9780470977835

Cover : Photo of Duffing reprinted from F.P.J. Rimrott, Georg Duffing (1861–1944), Technische Mechanik, 14(1), 77–82, 1994. Copyright 1994, reprinted with permission from Technische Mechanik.

Contributors

Balakumar Balachandran received his BTech in Naval Architecture from the Indian Institute of Technology, Madras, India, MS in Aerospace Engineering from Virginia Tech, and PhD in Engineering Mechanics from Virginia Tech. Currently, he is a Professor of Mechanical Engineering at the University of Maryland. He serves on the Editorial Board of the Journal of Vibration and Control, is a Deputy Editor of the AIAA Journal, and is an Associate Editor of the ASME Journal of Computational and Nonlinear Dynamics. He is a Fellow of ASME and AIAA. He has served as the Chair of the ASME Applied Mechanics Division Technical Committee on Dynamics and Control of Structures and Systems, and he currently serves as the Chair of the ASME Design Engineering Division Technical Committee on Multibody Systems and Nonlinear Dynamics. His research interests include nonlinear phenomena, dynamics and vibrations, and control.

Michael J. Brennan graduated from the Open University while he was serving in the Royal Navy. He received an MSc in Sound and Vibration Studies and a PhD in the active control of vibration, both from the University of Southampton, United Kingdom. He is a retired Professor of Engineering Dynamics at the Institute of Sound and Vibration Research (ISVR), the University of Southampton, UK, and is currently a Visiting Professor at UNESP, Ilha Solteira in Brazil. He is a past President of the European Association of Structural Dynamics, Associate Editor of the Transactions of the ASME Journal of Vibration and Acoustics and Guest Professor at Harbin Engineering University in China. He has a wide range of research interests, encompassing active and passive control of vibration, acoustics, vibroacoustics and rotor dynamics.

Livija Cveticanin graduated from the Faculty of Mechanical Engineering, University of Novi Sad, Serbia. She obtained her MSc in Mechanics from the Faculty of Natural Sciences, University of Belgrade, Serbia and PhD in the Technical Sciences at the Faculty of Technical Sciences (FTN), University of Novi Sad, Serbia. She is currently a Full Professor in the Department of Mechanics at the FTN and the Head of the Graphical Engineering and Design Department. She is a former Vice-Dean of the FTN and former President of the Yugoslav Society of Mechanics. Her research interest is directed towards nonlinear vibrations, rotor dynamics and dynamics of systems and mechanisms with time varying parameters.

Tamás Kalmár-Nagy received his MSc in Engineering Mathematics from the Technical University of Budapest and his PhD degree in Theoretical and Applied Mechanics from Cornell University. He is now an Assistant Professor in the Department of Aerospace Engineering at Texas A&M University. He serves on the Editorial Board of the Mathematical Problems in Engineering and Fluctuation and Noise Letters. He is a member of the ASME Design Engineering Division Technical Committee on Multibody Systems and Nonlinear Dynamics, as well as the Technical Committee on Vibration and Sound. His research interests are in delay-differential equations, perturbation methods, nonlinear vibrations, dynamics and control of uncertain and stochastic systems.

Ivana Kovacic graduated in Mechanical Engineering from the Faculty of Technical Sciences (FTN), University of Novi Sad, Serbia. She obtained her MSc and PhD in the Theory of Nonlinear Vibrations at the FTN. She is currently an Associate Professor in the Department of Mechanics at the FTN. She is also a Visiting Professor in the Institute of Sound and Vibration Research (ISVR) at the University of Southampton, UK, Assistant Editor of the Journal of Sound and Vibration and Book Reviews Editor for the Journal of Mechanical Engineering Science-Part C of the Proceedings of the Institution of Mechanical Engineers, UK. Her research involves the use of quantitative and qualitative methods to study differential equations arising from nonlinear dynamics problems mainly in mechanical engineering.

Stefano Lenci graduated in Civil Engineering from the University of Ancona, Italy. He obtained his PhD in Structural Engineering at the University of Florence. He had a two-year post-doc position at the University of Paris VI. He became an Assistant Professor at the Sapienza University of Rome and later Associate Professor at the Polytechnic University of Marche, Ancona, Italy, where he now serves as a Full Professor. He is a member of the Academy of Science of the Marche Region, Italy, and of the Editorial Board of the International Journal of Nonlinear Mechanics. He is Head of the PhD program in Structural Engineering, and member of ASME, Aimeta, SICC and Euromech. His research interests cover all fields of nonlinear dynamics and chaos of mechanical systems and structures. He also works on continuum mechanics, in particular in problems involving interfaces.

Asok Kumar Mallik received his bachelor and master degrees in Mechanical Engineering from the University of Calcutta and PhD from IIT Kanpur. He is currently an Honorary Distinguished Professor at the Bengal Engineering and Science University, Shibpur and an INSA Senior Scientist at S.N. Bose National Centre for Basic Sciences at Kolkata, India. He was a Professor of Mechanical Engineering and the first occupant of S. Sampath Institute Chair at the Indian Institute of Technology Kanpur. He was a commonwealth scholar at the Institute of Sound and Vibration Research at Southampton, UK and an Alexander von Humboldt Fellow at TH Aachen and TU Darmstadt, Germany. He received the Distinguished Teacher Award of IIT Kanpur. He is an elected Fellow of The Indian National Academy of Engineering and all the Science Academies in India. He has authored/coauthored 6 books and more than 80 research papers. Areas of his research include vibration engineering, nonlinear dynamics and kinematics. He also writes popular articles on mathematics and physics.

Giuseppe Rega is a Professor of Solid and Structural Mechanics at the Sapienza University of Rome, Italy, Chairman of the PhD Program in Structural Engineering, Director of the Doctoral School in Civil Engineering and Architecture, and past President of Italian Association of Theoretical and Applied Mechanics (AIMETA). He is a Member of the EUROMECH Nonlinear Oscillations Conference Committee and of the IUTAM General Assembly, Chairman of Euromech Colloquia and IUTAM Symposia, including ENOC 2011 in Rome, Associate Editor, Guest Editor or Editorial Board Member of several international journals. He was honored with an International Conference and a Special Issue for his sixtieth birthday. His research interests are in cable dynamics, nonlinear vibrations in applied mechanics and structural dynamics, bifurcation and chaos, control of oscillations and chaos, reduced-order modeling, dynamic integrity, wave propagation and smart materials.

Keith Worden started his academic life as a theoretical physicist with a BSc from the University of York. This was followed by a PhD in Mechanical Engineering from Heriot-Watt University and he has been an engineer (of sorts) since. He is currently a Professor of Mechanical Engineering at the University of Sheffield. His main research interests are in nonlinear systems and structural health monitoring. He has been struggling with the Duffing equation for the best part of 25 years now with very little to show for it, but he does not mind because it has largely been fun. Heather Worden has degrees in linguistics and speech therapy and is a practising speech therapist. A German specialist, she has helped to translate a number of scientific documents.

Hiroshi Yabuno graduated from Keio University, Japan. He received an MSc and a PhD in the Nonlinear Dynamics in Mechanical systems, both from Keio University. He is currently a Professor of Mechanical Engineering at this university. He is also a member of the Editorial Board of the Journal of Vibration and Control, an Editor of the Journal of System Design and Dynamics, and a member of the Working Party II of IUTAM. He is a past Professor of the University of Tsukuba and a past Visiting Professor of the University of Rome La Sapienza. His research interests include analysis, control, and utilization of nonlinear dynamics of mechanical systems; especially stabilization control of vehicle systems, motion control of underactuated manipulators, and bifurcation control of advanced atomic force microscopy.

Preface

The nonlinear equation describing an oscillator with a cubic nonlinearity is called the Duffing equation. Georg Duffing, a German engineer, wrote a comprehensive book about this in 1918. Since then there has been a tremendous amount of work done on this equation, including the development of solution methods (both analytical and numerical), and the use of these methods to investigate the dynamic behaviour of physical systems that are described by the various forms of the Duffing equation. Because of its apparent and enigmatic simplicity, and because so much is now known about the Duffing equation, it is used by many researchers as an approximate model of many physical systems, or as a convenient mathematical model to investigate new solution methods. This equation exhibits an enormous range of well-known behaviour in nonlinear dynamical systems and is used by many educators and researchers to illustrate such behaviour. Since the 1970s, it has became really popular with researchers into chaos, as it is possibly one of the simplest equations that describes chaotic behaviour of a system.

The idea to write this book came to us a couple of years after we had started working together on nonlinear problems in 2006. Although we are both mechanical engineers, we have a very different viewpoint on what is important when it comes to working on engineering research topics; Ivana very much specialises in theoretical mechanics and Michael is firmly in the practical engineering camp. The one thing that we did agree on, however, was that there was a real need to synthesise the huge amount of research conducted over the past 90 years or so on the Duffing equation, both for the academic and the engineering community. As working academics, this task was thought to be too large for us to undertake alone, so we decided to put together an edited book, drawing on the expertise of specialists working in nonlinear dynamics from around the world. The result is this book; in which each of the contributors was given a specific brief to write about one particular form of the Duffing equation. It should be noted that all of these forms were not in Duffing's original book, but the contemporary view seems to be that any differential equation that contains a cubic nonlinearity seems to be known as the Duffing equation; we have accepted this popular view.

A particularly interesting part of this project was tracking the development of the subject of nonlinear dynamics with specific regard to the Duffing equation. This was not an easy task for us, as Duffing's original book was written in German and so the early papers citing his book were also in German, and were not necessarily cited by the more popular papers written in English. It was of particular interest to the Editors to find out (a) how Duffing's work became well known to researchers and engineers in the world of the English language, and (b) when the equation he is now famous for, took his name. This is revealed in Chapter 1 of this book. The remainder of the book is a collection of chapters written by experts in the field of nonlinear dynamics. It contains a comprehensive treatment of the various forms of the Duffing equation, relates these equations to real oscillatory problems, and demonstrates the rich dynamics that can be exhibited by systems described by this equation. Thus, for the first time, all this information has been assembled in one book. An overview of each chapter is given at the end of Chapter 1. Because there are eleven contributors there is some inevitable overlap between some of the chapters. We have agonised over this, but on balance we have decided that this has some advantages, as each chapter can be read as a standalone piece of work. However, to help the reader, relevant links to the other chapters have been inserted.

We hope that this book will have broad appeal to a wide range of readers, from experienced researchers who would like to have this book in their reference collection, to young/new researchers in the field of nonlinear dynamics/vibrations who wish to learn some basic methods, and to engineers, who would like to see the effect that nonlinearities will have on the dynamic behaviour of their systems.

Finally, we would like to thank all our contributors for their efforts and support over the past two years.

Ivana Kovai and Michael J. Brennan

Southampton, July 2010

Chapter 1

Background: On Georg Duffing and the Duffing equation

Ivana Kovacic1 and Michael J. Brennan2

1University of Novi Sad Faculty of Technical Sciences, Serbia

2University of Southampton, Institute of Sound and Vibration Research, United Kingdom

1.1 Introduction

It is possibly the dream of many researchers to have an equation named after them. One person who achieved this was Georg Duffing, and this book is devoted to various aspects of his equation. This equation is enigmatic. In its original form, it essentially has only one extra nonlinear stiffness term compared to the linear second-order differential equation, which is the bedrock of vibrations theory, and this opens the door to a whole new world of interesting phenomena. Much of this was not known at the time of Georg Duffing, and is described in this book. The story behind the equation is also very interesting, because Georg Duffing was not an academic; he was an engineer, who carried out academic work in his spare time, as will be described later. In the present day when academics are being constantly reminded about the impact of their research work, and are constantly being judged by their output, in terms of publications, it is also interesting to look at the academic output from Georg Duffing and the impact of his work. Rarely is a paper or textbook written on nonlinear dynamics today without some reference to the Duffing equation, such is the impact of his work, yet he wrote less than ten publications in his life.

The aim of this book is twofold. The first is to give a historical background to Duffing's work, and to track the evolution of his work to the present day. This is done in this chapter. The second aim is to provide a thorough treatment of the different forms of his equation through the various chapters written by the contributing authors. This will involve qualitative and quantitative analysis coupled with descriptions of the many physical phenomena that are described by the various forms of his equation.

Nowadays, the term ‘Duffing equation’ is used for any equation that describes an oscillator that has a cubic stiffness term, regardless of the type of damping or excitation. This, however, was not the case in Duffing's original work, in which he restricted his attention to the free and forced harmonic vibration of an oscillator in which the stiffness force had quadratic and cubic terms, and the damping considered was of the linear viscous type. In this book the contemporary view is taken and many forms of the Duffing equation are studied, with the notable exceptions of a randomly or parametrically excited oscillator.

1.2 Historical Perspective

In any historical perspective, the authors undoubtedly provide their own interpretation of events, and this is also the case here. The history of nonlinear dynamics is vast and has many different threads to it, from the highly mathematical to the physical. It is not the intention of the authors to give a detailed history here – for this, the reader is referred to a review paper written by Holmes that covers the period 1885–1975 [1] and a slightly more recent paper by Shaw and Balachandran [2]. The authors restrict their attention to the historical perspective with respect to Duffing's work.

The concept of nonlinear vibrations was known long before Duffing wrote his book on oscillations [3], in which his famous equation is given. However, Duffing was the one to tackle the problem of a nonlinear oscillator in a systematic way starting with the linear oscillator, and examining the effects of quadratic and cubic stiffness nonlinearities. He emphasised the differences between the linear and the nonlinear oscillators for both free and forced vibration, also considering the effects of damping. Prior to Duffing, there had been some work on the mathematical analysis of nonlinear oscillators, for example by Hermann von Helmholtz [4] and Baron Rayleigh [5]. Two contemporaries of Duffing, Henri Poincaré (1854–1912) and Aleksandr Lyapunov (1857–1918), who were both giants in the history of nonlinear dynamics, did not appear to influence Duffing's work – at least they were not cited in his book.

In the story of nonlinear dynamics, as well as in Duffing's book, the pendulum plays a dominant role, and so it is appropriate to start the story with Galileo.

Galileo Galilei: 1564–1642. Galileo studied the pendulum and noticed that the natural frequency of oscillation was roughly independent of the amplitude of oscillation, i.e., they are isochronous. For it to be used in a time-keeping instrument, it needed to be forced because the oscillations diminished with time due to damping. He invented a mechanism to do this called an escapement [6]. This work was quickly followed by that of Huygens, who realised that the pendulum was inherently nonlinear.

Christiaan Huygens: 1629–1695. Huygens patented the pendulum clock in 1657. The early clocks had wide pendulum swings of up to 100°. Huygens discovered that wide swings made the pendulum inaccurate because he observed that the natural period was dependent upon the amplitude of motion, i.e., it was a nonlinear system. Subsequently the clocks were modified with a new escapement so that the pendulum swing was reduced to about 4–6°. Huygens also discovered that if the pendulum had a length that varied during the oscillation, according to an isochronous curve, then the frequency of oscillation became independent of the amplitude (effectively he linearised a nonlinear system) [7].

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!