Visual Six Sigma - Ian Cox - E-Book

Visual Six Sigma E-Book

Ian Cox

0,0
52,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.

Mehr erfahren.
Beschreibung

Streamline data analysis with an intuitive, visual Six Sigma strategy Visual Six Sigma provides the statistical techniques that help you get more information from your data. A unique emphasis on the visual allows you to take a more active role in data-driven decision making, so you can leverage your contextual knowledge to pose relevant questions and make more sound decisions. You'll learn dynamic visualization and exploratory data analysis techniques that help you identify occurrences and sources of variation, and the strategies and processes that make Six Sigma work for your organization. The Six Sigma strategy helps you identify and remove causes of defects and errors in manufacturing and business processes; the more pragmatic Visual approach opens the strategy beyond the realms of statisticians to provide value to all business leaders amid the growing need for more accessible quality management tools. * See where, why, and how your data varies * Find clues to underlying behavior in your data * Identify key models and drivers * Build your own Six-Sigma experience Whether your work involves a Six Sigma improvement project, a design project, a data-mining inquiry, or a scientific study, this practical breakthrough guide equips you with the skills and understanding to get more from your data. With intuitive, easy-to-use tools and clear explanations, Visual Six Sigma is a roadmap to putting this strategy to work for your company.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 693

Veröffentlichungsjahr: 2016

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Table of Contents

Wiley & SAS Business Series

Title Page

Copyright

Preface to the Second Edition

Preface to the First Edition

Acknowledgments

About the Authors

Part One: Background

Chapter 1: Introduction

What Is Visual Six Sigma?

Chapter 2: Six Sigma and Visual Six Sigma

Background: Models, Data, and Variation

Models

Measurements

Observational versus Experimental Data

Six Sigma

Variation and Statistics

Making Detective Work Easier through Dynamic Visualization

Visual Six Sigma: Strategies, Process, Roadmap, and Guidelines

Conclusion

Notes

Chapter 3: A First Look at JMP

The Anatomy of JMP

Visual Displays and Analyses Featured in the Book

Scripts

Personalizing JMP

Visual Six Sigma Data Analysis Process and Roadmap

Techniques Illustrated in the Remaining Chapters

Conclusion

Notes

Chapter 4: Managing Data and Data Quality

Data Quality for Visual Six Sigma

The Collect Data Step

Example 1: Domestic Power Consumption

Example 2: Biscuit Sales

Conclusion

Notes

Part Two: Case Studies

Chapter 5: Reducing Hospital Late Charge Incidents

Framing the Problem

Collecting Data

Uncovering Relationships

Uncovering the Hot Xs

Identifying Projects

Conclusion

Chapter 6: Transforming Pricing Management in a Chemical Supplier

Setting the Scene

Framing the Problem: Understanding the Current State Pricing Process

Collecting Baseline Data

Uncovering Relationships

Modeling Relationships

Revising Knowledge

Utilizing Knowledge: Sustaining the Benefits

Conclusion

Chapter 7: Improving the Quality of Anodized Parts

Setting the Scene

Framing the Problem

Collecting Data

Uncovering Relationships

Locating the Team on the VSS Roadmap

Modeling Relationships

Revising Knowledge

Utilizing Knowledge

Conclusion

Notes

Chapter 8: Informing Pharmaceutical Sales and Marketing

Setting the Scene

Collecting the Data

Validating and Scoping the Data

Uncovering Relationships

Investigating Promotional Activity

A Deeper Understanding of Regional Differences

Summary

Conclusion

Note

Chapter 9: Improving a Polymer Manufacturing Process

Setting the Scene

Framing the Problem

Reviewing Historical Data

Measurement System Analysis (MSA)

Uncovering Relationships

Modeling Relationships

Revising Knowledge

Utilizing Knowledge

Conclusion

Notes

Chapter 10: Classification of Cells

Setting the Scene

Framing the Problem and Collecting the Data: The Wisconsin Breast Cancer Diagnostic Data Set

Initial Data Exploration

Constructing the Training, Validation, and Test Sets

Prediction Models

Recursive Partitioning

Stepwise Logistic Model

Generalized Regression

Neural Net Models

Comparison of Classification Models

Conclusion

Notes

Part Three: Supplementary Material

Chapter 11: Beyond “Point and Click” with JMP

Programming and Application Building in JMP

A Motivating Example: Democracy and Trade Policy

Building the Missing Data Application

Conclusion

Notes

Index

End User License Agreement

Pages

ix

x

xi

ix

x

xv

xv

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

Guide

Cover

Table of Contents

Begin Reading

List of Exhibits

Chapter 2: Six Sigma and Visual Six Sigma

Exhibit 2.1 Modeling of Causes before Improvement

Exhibit 2.2 Modeling of Causes after Improvement

Exhibit 2.3 Visual Six Sigma Data Analysis Process

Exhibit 2.4 The Visual Six Sigma Roadmap: What We Do

Chapter 3: A First Look at JMP

Exhibit 3.1 JMP Home Window and Tip of the Day Window

Exhibit 3.2 Partial View of

PharmaSales.jmp

Data Table

Exhibit 3.3 Icons Representing Modeling Types

Exhibit 3.4 Menu Bar and Default Data Table Toolbars

Exhibit 3.5

Analyze

Menu for JMP Pro 12.2.0

Exhibit 3.6

Graph

Menu for JMP Pro 12.2.0

Exhibit 3.7

Distribution

Dialog for

PharmaSales.jmp

Exhibit 3.8

Distribution

Dialog with Three Variables Entered as Ys

Exhibit 3.9

Distribution

Reports for

Region Name

,

Visits

, and

Prescriptions

Exhibit 3.10

Distribution

Report Options

Exhibit 3.11 Stacked Layout for Three

Distribution

Reports

Exhibit 3.12 Variable-Specific Report Commands

Exhibit 3.13

Distribution

Reports for

Region Name

and

Salesrep Name

Exhibit 3.14 Bar for

Region Name

Scotland Selected

Exhibit 3.15 Partial View of Data Table Showing Selection of Rows with

Region Name

Scotland

Exhibit 3.16

Distribution

of

Salesrep Name

with Adrienne Stoyanov Selected

Exhibit 3.17 Data Table Consisting of 2,440 Rows with

Salesrep Name

Adrienne Stoyanov

Exhibit 3.18 Deselecting Rows or Columns

Exhibit 3.19 JMP Home Window with List of Open Windows

Exhibit 3.20

Tables

Menu

Exhibit 3.21

Rows

Menu with Commands for

Row Selection

Shown

Exhibit 3.22

Cols

Menu with

Utilities

Shown

Exhibit 3.23

Column Info

Dialog for

Visits

Showing Column Properties

Exhibit 3.24

DOE

Menu

Exhibit 3.25 Running the Script

Distribution Plots for Three Outcome Variables

Exhibit 3.26

Distribution

Report Obtained by Running

Distribution Plots for Three Outcome Variables

Exhibit 3.27 Saving a Script to the Data Table

Exhibit 3.28

Distribution

Script

Exhibit 3.29 Visual Six Sigma Data Analysis Process

Exhibit 3.30 Visual Six Sigma Roadmap

Exhibit 3.31 Platforms and Options Illustrated in the Remaining Chapters

Chapter 4: Managing Data and Data Quality

Exhibit 4.1 Data Management Activities in the Collect Data Step of Visual Six Sigma

Exhibit 4.2 Text Import Preview Options

Exhibit 4.3 Text Import Preview Window with Column Option

Exhibit 4.4 Warning Dialog

Exhibit 4.5 The JMP Table with Data from

household_power_consumption.txt

Exhibit 4.6

Missing Data Pattern

Exhibit 4.7 Formula to Find Number of Seconds

Exhibit 4.8

Distribution

of Columns (Partial View)

Exhibit 4.9 Were Measurements Attempted Every Minute?

Exhibit 4.10 Constructing a Virtual Column

Exhibit 4.11 Number of Measurements by Month

Exhibit 4.12 Number of Measurements Each Month by Day of the Week

Exhibit 4.13 Seasonal and Weekly Trends in

Global_active_power

Exhibit 4.14 Daily Trend in

Global_active_power

Exhibit 4.15 Daily Trend in

Global Active Power

on Day 7

Exhibit 4.16 Univariate Distributions of Power, Voltage, and Current

Exhibit 4.17 Selecting All Rows for June 23, 2009

Exhibit 4.18 Defining

No_Sub_metering

with a Formula

Exhibit 4.19 Power Drawn by Different Appliances on June 23rd 2009

Exhibit 4.20 Power Drawn by Different Appliances, Filtering by Day

Exhibit 4.21 Table

Biscuit Products.jmp

(Partial View)

Exhibit 4.22 Table

Biscuit Sales.jmp

(Partial View)

Exhibit 4.23 The

Join

Dialog

Exhibit 4.24

Biscuits.jmp

(Partial View)

Exhibit 4.25 Recoding

Number in Multipack

Exhibit 4.26 Pack Sizes for Different Biscuit Categories

Exhibit 4.27 Value at Risk for Different Biscuit Categories

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!