An Anthropology of Biomedicine - Margaret Lock - E-Book

An Anthropology of Biomedicine E-Book

Margaret Lock

0,0
34,99 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

An Anthropology of Biomedicine is an exciting new introduction to biomedicine and its global implications. Focusing on the ways in which the application of biomedical technologies bring about radical changes to societies at large, cultural anthropologist Margaret Lock and her co-author physician and medical anthropologist Vinh-Kim Nguyen develop and integrate the thesis that the human body in health and illness is the elusive product of nature and culture that refuses to be pinned down. * Introduces biomedicine from an anthropological perspective, exploring the entanglement of material bodies with history, environment, culture, and politics * Develops and integrates an original theory: that the human body in health and illness is not an ontological given but a moveable, malleable entity * Makes extensive use of historical and contemporary ethnographic materials around the globe to illustrate the importance of this methodological approach * Integrates key new research data with more classical material, covering the management of epidemics, famines, fertility and birth, by military doctors from colonial times on * Uses numerous case studies to illustrate concepts such as the global commodification of human bodies and body parts, modern forms of population, and the extension of biomedical technologies into domestic and intimate domains * Winner of the 2010 Prose Award for Archaeology and Anthropology

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 1263

Veröffentlichungsjahr: 2011

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Acknowledgment

Introduction

Improving Global Health: The Challenge

Biomedicine as Technology

Does Culture Exist?

A Word about Ethnography

Outline of Chapters

Part I: Technologies and Bodies in Context

1 Biomedical Technologies in Practice

Technological Mastery of the Natural World and Human Development

Technology and Boundary Crossings

Biomedicine as Technology: Some Implications

Technologies of Bodily Governance

Technologies of the Self

The Power of Biological Reductionism

Techno/Biologicals

2 The Normal Body

Cholera in the 19 th Century

Representing the Natural Order

Truth to Nature

The Natural Body

A Numerical Approach

Other Natures

Interpreting the Body

How Normal Became Possible

When Normal Does Not Exist

Problems with Assessing Normal

Pathologizing the “Normal”

Limitations to Biomedical “Objectivity”

Better Than Well?

3 Anthropologies of Medicine

The Body Social

Contextualizing Medical Knowledge

Medical Pluralism

The Modernization of “Traditional” Medicine

Medical Hybridization

Biodiversity and Indigenous Medical Knowledge

Self-Medication

A Short History of Medicalization

Opposition to Medicalization

The Social Construction of Illness and Disease

The Politics of Medicalization

Beyond Medicalization?

In Pursuit of Health

In Summary

4 Local Biologies and Human Difference

The End of Menstruation

Local Biologies

Rethinking Biology in the Midst of Life’s Complexity

Is Biology Real?

Kuru and Endocannibalism

Racism and Birth Weight

Of Microbes and Humans

Debates about the Origin of HIV

In Summary

Part II: The Biological Standard

5 The Right Population

The Origins of Population as a “Problem”

Addressing the “Problem” of Population

Improving the Stock of Nations

Alternative Modernity and Indian Family Planning

The One-Child Policy

Biomedical Technology and Sex Selection

Contextualizing Sex Selection: India and “Family Balancing”

Contextualizing Sex Selection: Disappeared Girls in China

Sex Selection in a Global Context

Reproducing Nationalism

In Summary

6 Colonial Disease and Biological Commensurability

An Anthropological Perspective on Global Biomedicine

Biomedicine as a Tool of Empire

Acclimatization and Racial Difference

Colonial Epidemics: Microbial Theories Prove Their Worth

Resistance to the Biomedicalization of Epidemics

Microbiology as a Global Standard

Infertility and Childbirth as Critical Events

Birthing in the Belgian Congo

A Global Practice of Fertility Control

Intimate Colonialism: The Biomedicalization of Domesticity

Biomedicine, Evangelism, and Consciousness

The Biological Standardization of Hunger

The Colonial Discovery of Malnutrition

Albumin as Surplus

The Biologization of Salvation

Madness

In Summary

7 Grounds for Comparison: Biology and Human Experiments

The Laboratory as the Site of Comparison

The Colonial Laboratory

Experimental Bodies

Rise of the Clinical Trial

Taming Difference by Chance

The Alchemy of the Randomized Controlled Trial

The Problem of Generalizability

Medical Standardization and Contested Evidence

Globalizing Clinical Research

Creating Markets for Biomedical Technologies in Developing Countries

Testing Biomedical Interventions for the World’s Poor

Disputes over Perinatal HIV Transmission Trials

What Should Count as Significant Evidence?

Living with Vampires: Perceptions of Research

Experimental Communities: Social Relations

In Summary

Part III: Moral Boundaries and Human Transformations

8 Who Owns the Body?

Commodification of Human Biologicals

Objects of Worth and Their Alienation

The Wealth of Inalienable Goods

A Bioeconomy of Human Biologicals

Who Owns the Body?

The Commodification of Eggs and Sperm

Immortalized Cell Lines

The Exotic Other

Biological Databases

Concluding Comments

9 The Social Life of Organs

Bioavailability – Who Becomes a Donor?

A Shortage of Organs

Inventing a New Death

The Good-as-Dead

Struggling for National Consensus

The Social Life of Human Organs

When Resources Are Short

Altruism, Entitlement, and Commodification

10 Kinship, Infertility, and Assisted Reproduction

Assisted Reproductive Technologies

Problematizing Infertility Figures

From Underfertility to Overfertility

Reproducing Culture

Assisted Reproduction in the United States

Assisted Reproduction in Egypt

Assisted Reproduction in Israel

ART in Global Perspective

Part IV: Elusive Agents and Moral Disruptions

11 The Matter of the Self

The Discovery of an Unconscious Self

Unlocking the Pathogenic Secret

The Pathogenic Secret as a Technology of the Self

The Making of Post-Traumatic Stress Disorder

The Practitioner-Self

The Sources of Therapeutic Efficacy

The Self's Therapeutic Powers

Technologies of Health Promotion

Technologies of Empowerment

Technologies of Self-Help

Confessional Technologies

Conclusion

12 Genes as Embodied Risk

From Hazard to Embodied Risk

From Generation to Rewriting Life

Genomic Hype

Geneticization

Genetic Testing and Human Contingency

Genetic Citizenship and Future Promise in America

Biosociality and the Affiliation of Genes

Genetic Screening

Preimplantation Genetic Diagnosis

13 Genomics, Epigenomics, and Uncertain Futures

Dethroning the Gene?

Eclipse of the Genotype–Phenotype Dogma

Epigenetics: Beyond Genetic Determinism

Epigenomics

The APOE Gene and Alzheimer’s Disease

Genetic Testing for Late-Onset Alzheimer’s Disease

Interpretations of Risk Estimates

Learning (Again) to Live with Uncertainty

14 Human Difference Revisited

Molecular Biology and Racial Politics

The Molecularization of Race

Commodifying “Race” and Ancestry

Looping Effects

Epilogue

Notes

Bibliography

Index

This edition first published 2010

© 2010 Margaret Lock and Vinh-Kim Nguyen

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical, and Medical business to form Wiley-Blackwell.

Registered Office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

Editorial Offices

350 Main Street, Malden, MA 02148–5020, USA

9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, for customer services, and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of Margaret Lock and Vinh-Kim Nguyen to be identified as the authors of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Lock, Margaret.

An anthropology of biomedicine / by Margaret Lock and Vinh-Kim Nguyen.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-4051-1072-3 (hardcover: alk. paper) – ISBN 978-1-4051-1071-6 (pbk.: alk. paper)

1. Medical anthropology. 2. Public health–Anthropological aspects. 3. Human body–Social aspects.

I. Nguyen, Vinh-Kim. II. Title.

GN296.L63 2010

306.4'61–dc22

2009040192

To Richard and Frank

Acknowledgments

The work of formulating and honing our arguments for this book entailed many informal get-togethers at our respective homes over a period of several years with the inevitable result that a considerable amount of excellent food was consumed in order that our brains might be nourished. This stimulus for thought would not have been so efficacious, however, without ongoing discussion and exchange of ideas with colleagues and friends on both sides of Mount Royal as well as further afield in just about every corner of the world. Special thanks go to Thomas Schlich, Abraham Fuks, Laurence Monnais, Nancy Hunt, Kenneth Weiss, and Ann Buchanan for reading drafts of one or more chapters. We are also indebted to the anonymous reviewers of the manuscript for their extremely helpful insights and encouragement. Special thanks go to Gillian Chilibeck, Megha Sedhev, Julie Désalliers, and Wilson Will for managing the immense bibliography and the inevitable challenges it at times posed. Our senior editor at Wiley-Blackwell, Rosalie Robertson, has been marvelously supportive throughout, as have Julie Kirk and Annie Jackson. We have drawn at length on the publications of numerous anthropologists, sociologists, historians, epidemiologists, philosophers, biologists, and others to ground our arguments and furnish the bedrock of this book, but the overarching orientation and the narratives that we have developed based on these incredibly rich sources are our own.

Introduction

It is commonly assumed that biomedical technologies, if equitably distributed, will dramatically improve the health and wellbeing of people everywhere. In principle we agree that this is indeed the case with respect to the majority of such technologies, but two major provisos need serious consideration. The first is that human bodies are not everywhere the same; they are the products of evolutionary, historical, and contemporary social change resulting from ceaseless interactions among human beings, their environments, and the social and political milieux in which they live. The second is that biomedical technologies are not autonomous entities: their development and implementation are enmeshed with medical, social, and political interests that have practical and moral consequences.

Three interwoven themes form the fabric of this book and illustrate throughout the significance of the provisos noted above. The first theme elaborates critically on a dominant orientation in biomedicine consolidated over the past three centuries that considers the human body, despite its outward differences, as everywhere essentially the same for the purposes of diagnosing and managing disease.1 This assumption that the human body can everywhere be normalized began to take form when biomedical technologies were used, often on an experimental basis, by the colonial empires of the 19th century on colonized peoples. Today, the global reach of biomedical technologies is undeniable and, together with public health, is the prime means by which governments and developmental agencies aspire to ameliorate disease and disability everywhere. An unexamined assumption about the uniformity of human bodies continues to inform most biomedical practice.2

Second, we elaborate at length on the way in which culture, history, politics, and biology (environmental and individual), are inextricably entangled and subject to never-ending transformations – phenomena that we call “biosocial differentiation.” Our position is that biological and social life is mutually constitutive, a position that is supported by evidence of the extent and significance of human biological diversity that we describe as local biologies. Research in epidemiology, population genetics, biological anthropology, and a small amount of work in cultural anthropology, together with remarkable new findings being produced at an exorbitant rate in molecular biology, have shown convincingly how evolutionary, historical, political, and social variables as well as individual behaviors can bring about changes in human biology, some transient and others long lasting. For example, the misuse of antibiotics has actually produced new pathogens and transformed others, bringing about so – called “emerging epidemics” resulting in new forms of biosocial differentiation.

Until recently, the majority of social scientists paid little attention to the material body in their ethnographic accounts, in effect placing its interior in a black box, off limits to investigation. Their assumption has been that the body “proper” – the standardized body subject to the laws of biology – falls outside their domain. Particularly since World War II, with its legacy of scientific racism and industrialized genocides, the issue of biological difference among human kind has become a potently charged one. As a result many social scientists are reluctant to address the issue of biological difference given how easily this may be framed in racial and racist terms, with negative social repercussions.

While we share this concern, we argue that empirically it is impossible to maintain a marked division between the biological body and its social context. The influence of social and political variables on human health is well recognized by the majority of epidemiologists and certain health economists, and highlights the socioeconomic and political ramifications of human wellbeing. We go further, however, and draw on the concept of biosocial differentiation to illustrate the dynamic process of embodiment – the lived entanglement – of local biologies, social relations, politics, and culture. In doing so we signal the limits of the approach commonly upheld in biomedicine that the human body is, for all intents and purposes, universal and amenable to intervention through standardized approaches to medical management and care.

To continue to ignore the possibility that human bodies may differ in biologically significant ways among groups will not, however, make the issue of racism go away. Such variations are not the result of a mistaken belief in essentialized difference among human kind (often glossed as “race”), but rather result from interactions among physical environments, social engagements, and individual bodies. Moreover, ignoring biological variation blinds us to the more insidious, perverse, and alarming consequences of political and economic processes that over time have resulted in intertwined social and biological vulnerabilities and forms of health inequalities not always captured in statistical surveys. Poverty, exposure to environmental toxins, and poor nutrition etch themselves over a lifetime into physical bodies and (as we shall see in chapter 13), the bodies of future generations.

The third theme is our resolute belief in the importance of ethnography for assessing the impact of biomedical technologies. Over the past 40 years medical anthropologists and other social scientists have written extensively about the introduction of biomedical technologies all over the world, documenting how such technologies are perceived at local sites and put to work in practice, and with what effects. Some of this research makes abundantly clear the positive effects of biomedical technologies, but a great deal more leads to startling cautionary tales about the limits of a standardized, largely unreflective approach to the delivery of health care, especially when local knowledge and aspirations are not taken into account. Clearly, it is essential to develop and sustain an approach to global health in which priority is given to a reduction in poverty and inequities, especially gender inequities. Health must be a basic human right, and its promotion and preservation demand that these inequalities be addressed. However, our argument is that such an approach should be complemented by the following: first, a clear-sighted recognition of unexamined assumptions embedded in the normative technological practices of biomedicine; second, an understanding of local aspirations and perceived priorities about individual and community wellbeing; and third, an acknowledgment of significant global biological diversity including close attention to how this is produced over evolutionary and historical time and, further, as a result of contemporary human activities both local and global. In what follows in this Introduction, we first situate our specific arguments in the context of a widely perceived need for global improvement in human health and wellbeing. We then address the concept of culture as it is used in this book, followed by some reflections on ethnography and its value as a research tool. In closing we set out the contents of each chapter.

Improving Global Health: The Challenge

It is abundantly clear that many biomedical technologies bring about globally significant changes for the better with respect to health outcomes. However, effective though a large number of biomedical technologies may be, a simple technofix leaves unchallenged the common-sense assumptions set out above. The ethnographic findings adduced in the following chapters suggest that these assumptions must be challenged if the world is to be made more equitable in terms of health and wellbeing.

The constitution of the World Health Organization (WHO) states that “the enjoyment of the highest attainable standard of health is one of the fundamental rights of every human being.”3 And yet newspaper reports daily make it patently obvious that large segments of the world’ s population do not enjoy these rights.4 Clearly the inequitable distribution of global economic resources is in large part responsible for this situation, exacerbated by structural adjustment loans and conditions imposed on countries slated for development by the World Bank, the International Monetary Fund, and other powerful institutions.5 The effect of these inequities and conditions, despite numerous pledges to reduce disparities, has been that the number of people living in absolute poverty over the past decade, the majority without access to health care, has burgeoned by over 100 million at a time when the total world income increased by 2.5 percent annually.6 Furthermore, this has happened at a time when biomedical technologies have become increasingly dispersed and are made use of worldwide.

In light of the dramatic and growing divergences in wellbeing between the increasingly wealthy and the desperately poor, wherever they live, efforts to improve global health have taken on a new urgency – in fact, the health of the world’ s poor has become something of a cause célèbre, as captains of industry, academics, retired politicians, and rock stars seek to marshal resources for the needy, making the most of media exposure to assist them. Yet the quest for global health continues to be compromised locally by poverty and the spread of conditions that foster ill health. Access to basic nutrition is increasingly conditioned by global economic forces that affect the availability of food. The price of food, for instance, depends on multiple factors, among them economic policies, agribusiness, and changing patterns of land use, over which individuals and even local governments have little or no control. Privatization of access to clean water in very many places has added to the travails experienced by people with few or no resources, enormously compromising their health. Increasing global warming adds to this burden.7 It is against this backdrop that efforts to improve the health and wellbeing of people are taking place.

In addition to attempting to provide basic food supplies, water, and sanitation, governments are expected to ensure that biomedical technologies are readily available, including immunization and indispensable medication including antibiotics and painkillers. Increasingly, however, as the media reminds us every day, money is spent on weapons as a result of local conflicts, leaving ever fewer resources for medical care. Furthermore, regulations implemented in the name of security as a response to threats of terrorism, real and imagined, have brought about restrictions by local governments on the movement of peoples as they attempt to flee from violence and abject poverty, resulting in a phenomenal rise in refugee and squatter populations.8 Epidemics of infectious disease thrive in conditions of poverty and instability, and today have the potential to wreak widespread havoc in a matter of hours, striking even the world’s wealthiest – as demonstrated by the case of Atlanta lawyer Andrew Speaker in 2007, who was infected with a lethal strain of extremely drug-resistant tuberculosis (XDR-TB), leading to a frantic search for other exposed passengers on transatlantic flights.9

In summary, the health of people everywhere is inextricably entangled with global politics, social issues, and economics. 10 Moreover, poverty, malnourishment, and poor sanitation are associated with high infant and maternal mortality, a greater exposure to pathogens and toxins, a larger number of illness episodes, and shorter life expectancies.11 These outcomes have been documented repeatedly over the past decades, and have become a major focus for governments, non-governmental organizations (NGOs), and interest groups that seek to improve health today.

Biomedicine as Technology

This book does not deal with inequities in health provision per se, but focuses instead on biomedical technologies and the way in which their application brings about radical changes, not merely with respect to individual bodies but in society at large. Unlike basic requirements such as clean water, biomedical technologies are not fundamentally essential for life. It is not necessary to have an extended discussion about the possible unintended consequences of providing clean water equitably to people. In contrast, numerous biomedical technologies, whether they concern the recruitment of subjects into randomized controlled trials in developing countries to test medications that will be marketed in the West, testing a fetus with the intention of practicing sex selection if it is of the “wrong” kind, or “pulling the plug” of a respirator sustaining the life of a patient in persistent vegetative state, raise profound moral questions, very often with legal and political consequences. Even something as apparently simple as taking a pill to treat an infection may have major repercussions on communities as a whole. A nationwide survey in Canada recently showed that it is not uncommon for people to self-medicate with leftover antibiotics present in their households, thus encouraging the spread of drug-resistant super-bugs. Furthermore, one in three Canadians wrongly believes that antibiotics are effective against viruses, and yet two-thirds of Canadians report that they have a clear understanding of when and how antibiotics should be taken.12 Furthermore, in hospital settings where, one would assume, antibiotics are correctly administered, epidemics of antibiotic resistant bugs have repeatedly emerged and spread into communities – the result, it appears, of a lack of hygiene among health care professionals.13

Our position is that biomedical technologies are not autonomous entities, the effects of which are essentially uniform whenever they are put into operation. Professional choices about the use of specific technologies – when exactly to put them into practice, and how to interpret the results and effects that they bring about – are combined with broader societal variables including culturally informed values and constraints, specific local and global objectives, economic disparities, and inconsistent or non – existent regulations. These variables ensure that the far-reaching effects of biomedical practices of all kinds are understandable only in context, notably at sites of implementation. Drawing largely on ethnographic research, our objective is to illustrate the impact and repercussions associated with the application of several biomedical technologies in many locations, north and south, east and west, including some that are well established and widely used, and others more recently developed. Discussion will highlight professional and popular discourse about these technologies and the effects of their implementation on individuals, families, communities, and nations. Local and global policy-making in connection with their use will also be examined. Such discussion cannot be separated from a reciprocal consideration of the broader global interests and objectives of organizations such as the WHO and UNESCO, governments of both wealthy and poor countries, special interest groups, multinational business and industry, medical communities, and NGOs, all of which at times facilitate or else impede the distribution of technologies.Throughout this book our attention will be directed toward the vibrant entanglements of human activity in connection with biomedical technologies. However, we give relatively little attention to the minutiae of activities in laboratories – gene splicing, micromanipulation of human gametes, drug preparation, and so on; nor do we examine the marketing of biotechnological products. Our focus is on taken-for-granted objects of knowledge in the worlds of medicine, public health, and health policy, and their usage in practice. We also discuss the ways in which various practices and technologies are legitimated, and in particular the value judgments (often unrecognized) embedded in this type of discourse. In creating our arguments, we draw extensively on historical and ethnographic research, because the impact made by biomedical technologies of all kinds cannot be understood without an appreciation of how they are incorporated into the historical trajectory and everyday social life of the locales in which they arrive. We will show that it is impossible to assess the effects of technologies without obtaining extensive first-hand accounts from affected populations about their experiences in adopting (or being forbidden to adopt) specific biomedical technologies.

While quantitative survey research can result in findings that assist in the implementation of innovative changes in health policy-making, our position is that evidence in the form of accounts given by local peoples should also be drawn on in creating policies because the promise of and the actual effects of biomedical technologies are embedded in the social relations and moral landscapes in which they are applied. Ethnography and other forms of knowledge that explicitly engage the views of local actors provide insights into the ways in which the global dissemination of biomedicine and its specific local forms transform not only human bodies, but also people’s hopes and aspirations in ways that may well have broader repercussions for society at large, a point that will be developed in several of the following chapters.

Does Culture Exist?

Throughout this book the concept of culture will be drawn on, at times explicitly, at other times implicitly, as an analytic tool in the discussions that follow. The idea of “culture” has a tortuous genealogy, in part as a result of its separate origins in several European languages from approximately the 14th century and its continued use since then in several different ways. From the time that anthropologists first took up this concept in the mid-19th century they have created hundreds of definitions of culture, and continue to debate and discuss its worth. 14 For this reason, a brief discussion follows about this slippery concept and how we make use of it in this book.

The anthropologist Clifford Geertz, writing about the concept of culture in the 1990s, stated that the task of “other-knowing,” that is, the work of many anthropologists, “is a delicate business.”15 As part of the escalating process of globalization, borders dissolve and boundaries that are drawn to demarcate self from other – whether justified in terms of politics, economics, or the idea of culture – tend to become less meaningful and, in many instances, actively open to dispute. The assumption, held formerly by the majority of anthropologists and others, that in a named culture everyone participates equally in local socioeconomic arrangements, exhibits similar behavioral patterns, and adheres to shared values is no longer tenable. The majority of anthropologists now agree that assigning individuals to named essential-ized cultures is not a valid exercise and, although many medical anthropologists have in the past given priority to “culture” as an explanatory concept in connection with matters relating to health, it has now become obvious to most that this concept has serious limitations. For one thing, in privileging culture, anthropologists have often set to one side a consideration of political and economic contributions to health and illness, notably the impact of inequities and discrimination on wellbeing and longevity.16 But beyond this fundamental difficulty is another, bearing on the culture concept itself, involving a vexing debate about what exactly is being conveyed by using culture as an analytic tool.

More than any other eminent anthropologist Clifford Geertz has wholeheartedly supported the concept of culture. Over a decade ago, clearly feeling defensive, he set out to defend his continued support for its utility:

Everyone, everywhere and at all times, seems to live in a sense-suffused world, to be the product of what the Indonesian scholar Taufik Abdullah has nicely called a history of notion-formation … one can ignore such facts, obscure them, or pronounce them forceless. But they do not thereby go away. Whatever the infirmities of the concept of “culture” (“cultures,” “cultural forms” …) there is nothing for it but to persist in spite of them.17

The anthropologist Marilyn Strathern, writing for a largely medical audience, also defends the use of culture, and argues that the concept “draws attention to the way things are formulated and conceptualized as a matter of practice or technique. People’s values are based in their ideas about the world; conversely ideas shape how people think and react.” She goes on: “ideas always work in the context of other ideas, and contexts form semantic (cultural) domains that separate ideas as much as they connect them.”18 In common with many other anthropologists, including ourselves, Strathern is adamant that if this slippery concept is to be made use of, then it must be applied ubiquitously, to all societies and to all aspects of knowledge, including scientific knowledge.

Other writers stress that culture should be understood as neither static nor totalizing; culturally informed values are subject to dispute, are never distributed equally across named groups of people, and are inevitably made use of in relationships of power, moral order, and the maintenance of inequalities. 19 However, borders and boundaries can no longer easily be demarcated and, given the global economy, are best interpreted as a “complex, overlapping, disjunctive order.”20 Arjun Appadurai argues that a major problem today is “the tension between cultural homogenization and cultural heterogenization.”21 He points out that by homogenization is usually meant “Americanization” and/or “commoditization”; however, he argues there is a second process that often goes unnoticed, one of “indigenization,” a process that occurs when newly diffused ideas, knowledge, behaviors, technologies, and material goods are appropriated and actively transformed in order to “fit” with the cultural horizons of their new localities. Significantly, it has been shown repeatedly that artifacts, including biomedical technologies, can be introduced successfully to different locations without the simultaneous adoption of the logical use originally associated with them.22 New meanings and social relations coalesce around transported artifacts, whatever the direction of their travel.23 This is not an argument for the autonomy of artifacts (or for that matter for the autonomy of culture), but rather for their inherent heterogeneity as social objects, a point to which we will return in the following chapters.

Today, nation-states often draw self-consciously on the idea of a unique shared history and culture that holds their peoples to a common set of so-called “traditional” values that serve as a moral code for conduct. This idea of a unique shared history has been described by the anthropologist Daniel Valentine as “mythohistory”24 and, when invoked, can have profound affects on the application of technology.25 Nationalistic sentiments such as these serve to re-essentialize the culture concept at a time when anthropologists are voicing marked concern about its misapplication. Furthermore, it is noticeable that many people who formerly assisted in anthropological research as local “informants” react strongly today to being “treated as specimens of cultural difference and otherness.”26 Equally evident, the self-conscious fostering of the idea of a shared culture is, in most parts of the world, subject to interrogation or rejection by segments of the populations in question. In other words, the very idea of culture is being politicized and has become a touchstone for mobilizing dissent often in opposition to “outsiders.”

In contrast, in health care settings in the West, in an effort to promote what is sometimes termed “ethnically sensitive health care,” or “cultural competence,”27 health care professionals in the U.S., Great Britain, Canada, and elsewhere are frequently encouraged to pay attention to the impact of culture and ethnicity on the knowledge and behavior of their patients. This practice can perhaps be characterized as the “medicalization of culture.” Such an approach makes few allowances for the following: highly divergent countries of origin of immigrants who speak the same language; generational, educational, and value differences among immigrants; and embedded gender inequalities that can be profoundly damaging to the health of women and children. No standardized approach to acquiring “cultural competence” is adequate; the challenge demands a great deal of careful, context-sensitive reflection, rather than simply adding on cliched notions of ethnicity as another variable in the patient history.28

Despite the promotion of so-called cultural competence, a widespread tendency persists among certain health care professionals and indeed many members of the public, evident at times in the media, of ethnically stereotyping “others.”29 Part of the reason for this in the world of medicine is the common assumption that “culture” is largely composed of non-rational and superstitious beliefs that inhibit the acceptance of scientifically grounded knowledge and practices, and that such beliefs must be circumvented in order to bring about patient compliance. In a recent essay Didier Fassin notes that health care authorities, including those employed by the WHO, frequently cite cultural beliefs as the reason why women choose not to cooperate with the modernization of maternity practices: “In incriminating culture, as certain health authorities willingly do, sometimes supported by anthropological data, they are in fact blaming victims while masking their own responsibility in the matter.”30 Using a case study from Ecuador, Fassin stresses that poverty and an inability to travel to biomedical facilities on the part of many indigenous peoples have much greater explanatory power in accounting for apparent non-compliance than does the idea of embedded cultural resistance. Fassin, himself a physician/anthropologist, noted that this situation was exacerbated by a lack of understanding and sympathy among local health care professionals. He argues that “culturalism,” by which he means the assumption that culture is a unified entity and may be used to fully account for people’s behavior, is made use of by powerful individuals and in institutions to divert attention from the social, economic, and political origins of ill health.31

Culturalism often ensures that “target populations” themselves are assumed to be the cause of difficulties encountered in trying to implement changes in health care; furthermore, Fassin argues, such an attitude denies people a right to be different in how they understand their bodies in health and illness. He decries the violence implicitly associated with culturalism, but concedes that it is possible to retain the idea of culture as a useful concept (in the form of widely shared values within a group of people), provided that it is used as an explanation of last resort and then only as a politicized concept – a study of culture must move out of the realm of moral assumptions, he argues, and into the domain of politics. It is then possible to better comprehend the dangers associated with adopting an attitude in which it is assumed that culture determines behavior. Furthermore, by politicizing culture, it is made evident how the concept, often linked with religion, is subject to being mobilized for nationalistic purposes by powerful groups, usually in opposition to perceived threats to society as a result of the “Westernizing” influences of modernity.

We agree wholeheartedly that the effects of inequities, discrimination, and injustice on health and on life itself must be exposed; these variables account, more than do any others, for the unequal distribution of disease, disability, and early death.32 But recognition of the way in which culturalism contributes to the perpetuation of inequities and injustice within and among societies is crucial, especially when it is recognized that the majority of individuals today are no longer immersed in a situation where a dominant cultural ideology exerts a hegemonic hold over them. Increasingly, as a result of exposure to other ways of being, people in most parts of the world are able to reflect on their lives and exert agency in the hope of bringing about change. Although living under an oppressive political regime places major limitations on such activities, it is nevertheless clear that global communication technologies such as the Internet and the cultural ideas of many kinds that they disseminate have the power to influence how people virtually everywhere are able to imagine a better life for themselves.33

In his recent comprehensive genealogy of the anthropological uses of culture, Michael Fischer comes out in support of the concept. He argues that culture is, in effect, “an experimental tool” for anthropologists – one that assists in making “visible the differences of interest, access, power, needs, desires, and philosophical perspective[s].” Fischer goes on to note the importance of the concept of culture for understanding new developments in the life sciences: “in particular, as we begin to face new kinds of ethical dilemmas stemming from developments in biotechnologies, expansive information and image databases, and ecological interactions, we are challenged to develop differential cultural analyses that can help articulate new social institutions for an evolving civil society.”34 Many of these emerging institutions are assemblages whose networks straddle the globe and are by no means confined within one or more society. Increasingly facets of biomedical research are deeply embedded in such networks with repercussions for clinical care and the promotion of public health everywhere. Further discussion of such networks appears in Part III of this book.

A Word about Ethnography

Historically the practice of ethnography was devoted to providing detailed descriptions of the “exotic other” in order to “make the strange familiar.” During the latter part of the 20th century, a second objective was made explicit, namely to use such descriptions to reflect on how “our own common sense is structured.”35 The anthropologist George Marcus, in writing about the techniques and uses of ethnography for a globalized world at the end of the 20th century, called for a significant shift in the orientation of ethnographers away from an emphasis on localized, discrete societies. He argued that if the findings of ethnographic projects are to have significance beyond anthropological circles then they should be multi-sited.36 Marcus insists that no one site can any longer be regarded as insular; documenting the worldwide networks in which linked sites are embedded, and giving voice to all involved actors, powerful and otherwise, wherever they reside, is crucial. This does not necessarily mean literally visiting a string of field sites but rather documenting how larger forces past and present impinge on local sites. Giving voice to peoples without power whose opinions and experiences are rarely heard or known has been common anthropological practice. Such research continues to be important, but by taking a multi-sited approach, the many factors relating to an object or phenomena selected for investigation can be described, including the perspectives of experts, policy-makers and practitioners.

Marcus cautions that, particularly when portraying the positions of those in power, it is all too easy to fail to interrogate key categories that appear commonsensical and are used unreflectively by researchers. A multi-sited ethnographic approach readily opens up for questioning ontological assumptions about what is assumed to be “real” and fundamental, as well as epistemological assumptions about how we know what we know. One effect of this approach is to highlight the way in which scientists, health policy-makers, and publics are all caught up in culturally informed realities that are sometimes mutually reinforcing, and at other times divisive. Disputes among scientists and clinicians, as well as competing positions taken up by government factions, advocacy groups, and affected families and individuals, are made visible through ethnography and by means of archival research. For example, ethnographic research on HIV should engage experts and policy-makers who seek to change sexual behavior through HIV prevention programs, and not only the individuals who are targeted by these programs. Current debates about the role of male circumcision, abstinence, or condoms in HIV prevention require that the cultural beliefs and practices of NGOs, development agencies, and international organizations be examined in light of the expertise and critical perspectives (rather than the “culture”) of their intended “beneficiaries”.

A good number of medical anthropologists have made use of ethnography over the past 30 years to examine certain of the unexamined assumptions embedded in biomedicine, including the creation of biomedical categories of disease, the way in which populations are delineated, and other fundamental assumptions about what will count as natural facts. The idea of the gene, for example, is presently undergoing a transformation for many scientists, so that it is no longer recognized literally as a material entity, but rather as a working concept, with enormous social repercussions for predictions of and testing for genetic risk.37 A “physical snippet of DNA” is the material entity that takes priority in the minds of many scientists today; this epistemological shift will be taken up more fully in chapter 13.38 Similarly, until relatively recently it was believed that nerve tissue could not regenerate. That belief is now thoroughly overturned and brain “plasticity” is recognized among neuroscientists, also with significant social repercussions.39

This book is not itself an ethnography, but in creating our arguments we have drawn extensively on ethnographic research that we find particularly helpful in revealing entanglements among history, politics, and cultural values in connection with the global circulation of biomedical technologies. As noted above, it is abundantly clear that wherever they live, the vast majority of people are by no means passive recipients of new technologies, and inevitably a variety of disputes and responses are evident in any given setting. A considerable amount of our attention will focus in the following pages on these responses in order to highlight the severe limitations of a top-down approach to the implementation of biomedical technologies.

Throughout the discussion in the following chapters we pay considerable attention to the way in which culturally infused assumptions are embedded in scientific knowledge, health policy-making, and clinical care, with significant consequences for local populations. It is the cultures of organizations, of biomedicine,40 and of other powerful actors that are often more pertinent factors in shaping the outcomes of public health initiatives than are the values embedded in targeted populations; yet such cultures of power and intervention are studied only rarely.41 We highlight the several bodies of knowledge, unexamined assumptions, and expectations evidenced among the many actors involved in medically related projects, including politicians, NGOs, basic scientists, clinicians, patients, families, and communities.

We also consider the actual implementation of biotechnologies at local sites, wherever their origin – global, regional, or local – giving recognition to the ever-present possibilities for fluidity, transformation, and surprise. It is clear that culturally infused values have relevance both to the reception of biomedical technologies and the uses to which they are put, or alternatively to their rejection, as was the case while the Bush administration was in power in the United States for stem cell technology making use of discarded human embryos.

Outline of Chapters

The book is divided into four parts. In the first part, comprising four chapters, the relationship among technologies, the production of knowledge about the material body, and actual medical practice are considered with emphasis on historical, social, cultural, and political variables. The first chapter sets out different ways of characterizing technologies and in so doing highlights our position that biomedical technologies are neither morally nor socially neutral; rather, unexamined assumptions are embedded in the development of technologies and their implementation in practice that reflect prevailing social and political interests and cultural values. Furthermore, biomedical technologies encompass a broad range of practices and procedures that are made use of not only in clinical care, but also in both the production of scientific knowledge and standardized practices. Technologies are not, therefore, the straightforward application of scientific knowledge; furthermore, we argue that biomedicine itself is a technology.

In the second chapter we discuss the way in which, beginning in the 17th century, a systematic and ultimately scientific approach to knowledge about the body and its management began to emerge, resulting in what has come to be known today as biomedicine. This approach was grounded by knowledge produced by decontextualizing the body and subjecting it to an anatomical gaze resulting in the objectification of bodies. Furthermore, by the 19th century, the condition of individual bodies began to be judged in relation to so-called “norms” derived from statistical data based on the biological characterization of groups of bodies – or populations – with the result that disease came to be conceptualized as essentially everywhere the same. Thus, the science of biology became the standard, a set of agreed-upon rules, for intervening in the body.

In chapter 3 we outline several research themes prominent in the social sciences over the past half century that demonstrate, in stark contrast to a common assumption about the scientific neutrality of biomedicine, that medicine is a deeply social and political enterprise. Medical anthropology and medical sociology have made use of diverse theoretical orientations and methodologies over the years to produce a rich body of data; we elaborate on two themes: the phenomenon of medical pluralism abundantly evident everywhere in the world and the so-called medicalization of life, including the social construction of disease taxonomies and the significance of illness narratives; and the pursuit of health. These social science findings alert readers to the limitations of an approach to the body which assumes objective and standardized measures that do not unfailingly achieve desired results, and they also make clear what sets biomedicine apart from other medical systems.

Using ethnographic and scientific findings, we argue in chapter 4 for the recognition of local biologies. Evidence is presented that bodies are not everywhere the same because humans are inextricably entangled with historical, environmental, social, cultural, and political contexts, thus dislodging an assumption that bodies are readily “standardizable.” We challenge the notion of biological universals using examples about the end of menstruation, the neurodegenerative condition known as kuru, the relationship between the experience of racism and low birth weights, and the reciprocal association of microbes and humans. These examples make clear that nature and culture are inseparably entangled and, further, that evolutionary, environmental, and social forces, including the application of biomedical technologies, transform the material body.

Part II of the book, comprising chapters 5 through 7, shows how biology has become as a standard for technological intervention on human bodies and populations. The impact of these technologies at local sites is documented with reference to historical and ethnographic materials. Central to our argument is a consideration of how the technological production of biomedical knowledge and its practices are entangled with practices by means of which power, wealth, health, and longevity are acquired both globally and locally. These chapters also make clear how the deliberate or inadvertent erasure of local biologies has serious implications for the management of ill health. Chapter 5 opens with a discussion of the history of the concept of “population” commencing with Thomas Malthus. The now defunct science of eugenics associated with the social engineering of populations is then considered and its transition in the mid–20th century to the “family planning” movement and thence to contemporary “population control.” In recent years, numerous governments, in order to “acquire” modernization and economic development, have made systematic use of technologies designed to reduce excess population. The case studies of China, India, and Palestine are used as illustrative examples of the varied politics of population management, global and local. The dramatic impact of these technologies on everyday life is stressed and, on the basis of social science research, it is shown how the demand from above to dramatically reduce family size has exacerbated gender discrimination. Illegal use of fetal imaging technology to select against female births has resulted in a significant imbalance in the sex ratio at birth in several parts of the world. This situation raises the question of the global governance of biomedical technologies.

Chapter 6 discusses some aspects of the medical management of “critical events” including epidemics, famines, and fertility and birth, from the early 19th century with an emphasis on the European colonies of Africa. This chapter also reveals the way in which campaigns for infectious disease control and improved maternal and child health and nutrition paved the way for biomedicine to become the dominant medical system, even in places far from where it first arose. The public health measures that were put into practice in the colonies, once found to be successful, in turn influenced the introduction of similar practices in many of the major European cities. Chapter 7 describes the way in which the assumption of human biological equivalence worldwide provides the grounds for counting and comparing humans, in effect making human populations worldwide available as “laboratories” for generating biomedical knowledge. The assumption of a standardizable body permits specific material, political, and economic conditions at local sites, and the local biologies that result, to be effectively circumvented, with enormous moral and practical consequences. The knowledge acquired from these experimental sites, in particular those that conduct randomized controlled trials, is put to work in producing medications, the bulk of which may be consumed far from these experimental sites.

The third part of the book, comprising chapters 8 through 10, deals with techno/ biologicals, entities created out of living cells, tissues, and organs that facilitate research, or else substitute or replace faulty, inadequate, or failed body parts and mechanisms. The production and application of techno/biologicals challenge several fundamental assumptions about the natural and moral order, including that of the body as a clearly bounded entity; a well-demarcated distinction between self and other; and what constitutes biological parenthood. What was formerly assumed to be an unassailable distinction between the social and natural order can no longer be thought of in this way. Chapter 8 examines the types of “acquisitions” essential to the implementation of vital technologies, namely the global commodification of human bodies and body parts for use as experimental and therapeutic tools. The bio-economy associated with this form of commodification is considered and the question of who “owns” the body is discussed. The commodification of eggs and sperm is considered by two illustrative case studies, one about the “immortalization” of cell lines and a second about DNA data banking. Chapter 9 examines one specific form of bodily acquisition – the procurement of human organs and tissues for transplantation. The “bioavailability” of organ donors is discussed, as well as the complex global repercussions of both the sale and donation of organs for involved individuals, families, communities, and nations. Until recently, most organs for transplant have been obtained from human bodies diagnosed as brain dead. The creation of this concept and its application results in entities that are hybrids of life and death, entirely dependent for existence on technological intervention designed to ensure that biological life continues in a body where it is assumed the person is no longer present. Chapter 10 focuses on the beginning of life, and takes up the politically charged topic of reproductive health. Emphasis given by governments and international agencies to fertility control is in strong contrast to the paucity of research on infertility in most parts of the developing world, notably sub – Saharan Africa. The consequences for everyday life of ignoring infertility are discussed. Also examined is the global implementation of assisted reproductive technologies, with emphasis on the gendered, social, and political ramifications of these practices. Ethnographic findings from the United States, Egypt, Israel, and elsewhere are made use of to illustrate the significant challenges posed by these technologies to normative reproduction and who counts as kin.

The fourth and final part of the book examines how attempts to locate invisible and elusive agents of illness within the body – in the form of the unconscious or the gene – may falter, generate radical uncertainty, and have other unexpected consequences. We focus on how biological selfhood is resocialized in unexpected ways, and how these agents introduce new forms of personal responsibility for some while absolving others. These uses of biomedical technologies in fact challenge common distinctions made between body and self and self and other, and ethnographic examples show clearly how people’s sense of “self” results both from embodied, biological phenomena and patterns of social relations.

Chapter 11 examines how the “self” is mobilized to therapeutic ends, and how biomedical technologies act as “technologies of the self” when used by individuals to heal themselves and others, and to achieve a better life for oneself and one’s offspring. Technologies that are used to uncover “pathogenic secrets,” fashion biomedical practitioners’ expertise, and foster social “empowerment” are examined to challenge common assumptions about a universal, inward self and the “objectivity” of biomedicine, including the idea that biomedicine’s therapeutic power stems from biological efficacy alone.

In chapter 12 we consider the new genetics and the concept of “embodied risk.” Technologies of genetic testing and screening make the genetic body knowable and, once again drawing on ethnographic findings, we examine the impact of learning about one’s genetic heritage for sense of self and kin, political activism, and new forms of sociability. Preimplantation genetic diagnosis – the selection of fetuses following genetic screening for implantation and gestation – is also discussed in light of concerns about an emerging neo-eugenics.

In chapter 13, the significance of recent findings in molecular biology for challenging genetic determinism is outlined, as well as a discussion of directions taken by emerging epigenetic knowledge. The difficulties of calculating estimations of risk for future disease based on knowledge about susceptibility genes associated with complex common disease are discussed and illustrated with reference to ethnographic data about late-onset Alzheimer’s disease.

The final chapter takes up the topic of biological difference, and the way in which findings in molecular genetics and genomics have resulted in a new round of politically charged disputes about race and ethnicity. We argue that because biological difference is real, as we have shown throughout the book using the concept of local biologies, to deny this reality is inappropriate and leads at times to poor medical care. Nevertheless to use essentialized categories of race to gloss biological difference is entirely inappropriate.

In conclusion we return to the argument we make for the entanglement of material bodies with history, environment, culture, and politics. We reiterate what has been stated in different ways throughout the book – that the human body in health and illness is not an ontological given but a moveable, malleable entity – the elusive product of nature and culture that refuses to be pinned down.42 Without attention to this malleability and to the social and political contexts in which people live out their lives, technological interventions will often result in unintended consequences, and will exacerbate rather than heal global inequities and health disparities.

Part I

Technologies and Bodies in Context

1

Biomedical Technologies in Practice

In this chapter, we set out our argument that biomedical technologies are not merely devices or machines such as blood tests and X-ray machines that permit the routinized application of scientific knowledge; neither are they ethically and morally neutral. Biomedical technologies have histories that inevitably start with an idea or a random or unexpected observation that then initiates a series of experimental procedures. Many technologies never progress beyond this initial phase, but others are put into production and are then applied in medical care. However, the application of a biomedical technology does not simply depend on its medical use alone, but is deeply influenced by prevailing medical and political interests and cultural norms, as well as by overarching ideas about the most promising directions for progress and mastery of the natural world.

At the experimental stage, biomedical technologies enable manipulations that intervene in animal and human bodies to make previously unknown or inaccessible “objects” factually real. Very often extensive tinkering is necessary to produce these material entities or “techno-phenomena.” The improbable chain of events in 1928 that led the Scottish researcher Alexander Fleming to observe the antibiotic properties of the rare mold, Penicillium notatum, is a well-known example of the humble origins of many biomedical technologies. Fleming rather carelessly left an open Petri dish smeared with Staphylococcus bacteria on his laboratory bench by an open window while he went away on a two-week holiday. When he returned a clear halo surrounded the yellow-green growth of the bacteria produced by a mold that had accidentally drifted into Fleming ‘ s London lab from a mycology unit one floor below. Various unconfirmed reports about the effectiveness of the mold had already been reported prior to Fleming’s “discovery,” but he was the first to grow a pure culture of Penicillium resulting in a new techno-phenomenon that he named penicillin. However, it was not until 1942 that sufficient observations and experiments had been carried out and sufficient quantities of penicillin produced for it to be put formally into production in the United States, and then initially only on a small scale. It took even longer for ordinary doctors to appreciate its value and learn that the drug should be administered intravenously to be effective.

Ludwig Fleck argued in the first half of the 20th century that phenomena that scientists work with are the products of technologies, practices, and preconditioned ways of seeing and understanding. Fleck’s argument is that every scientific phenomenon exists only as a result of a technical intervention on the part of scientists,1 and that creating a firm separation between the worlds of research and of application (such as is commonly done between the laboratory and the clinic) is entirely inappropriate. In other words, biomedical technologies are anchored as part of one or more “sociotechnical systems” that straddle institutions including hospitals, laboratories, biotech companies, and the state.2 The phenomena that result from their application coalesce as accepted biological, clinical, and epidemiological facts associated with biomedical practice. Such routinized practices are transportable across vast distances, and are capable of marshalling yet more phenomena as a result of systematic interventions into patient bodies or populations of people, thus producing yet more facts. In other words, biomedical technologies bring about transformations, resulting in newly discovered knowledge about the material world that, in turn, influences subsequent interventions into it. This insight informs our position that the science of biomedicine is actively constructed by technology – biomedical technology. By extension this means that health-related matters are routinely “objectified” as technical problems, to be solved through the application of technology and the conduct of science and are, by definition, therefore, decontextualized in practice. Objectification tends to make opaque moral assumptions embedded in the uses to which any given technology is put and its actual effects on individuals and social groups, as the following chapters will show.

This approach builds on and extends the work in the 1960s and 1970s of the French philosopher Michel Foucault. As is well known, Foucault argued that, commencing in the 17th century, the management of individuals by the state began to be accomplished through the expansion of practices of regulation, discipline, and surveillance directed at individuals. At the same time, government of “populations” – of what Foucault termed le vivant (“the living”) – was brought about making use of technologies of the census. Foucault coined the term “biopower,”3 to describe the means by which government is exercised in the form of technologies that, while not “machine-like,” are nonetheless systematic and codified, generating objects for management as well as new knowledge. Foucault’s formulation encourages an examination of a broad range of practices that can be usefully understood as biomedical technologies. Shortly before his death Foucault introduced a distinction between, on the one hand, technologies of bodily governance that he termed “objectifying practices” and, on the other hand, technologies of the self used to transform one’s own body and mind through, for instance, spiritual exercises, public acts of contrition, and confession.4 Together, these technologies have resulted in forms of embodiment and experience that people today take to be “natural,” resulting in the “making up” of kinds of people that did not previously exist.5

We argue that two significant developments make a straightforward application of Foucault’s categories to contemporary biomedical technologies problematic. The first is the advent of what we call “techno/biologicals,” technologies that are in part constituted from human biological material, thus troubling “natural” categories about self and other, and producing new forms of life. The second is the deployment of biomedical technologies outside the parameters of the state, whether in the developing world or in industrialized economies, by NGOs and private actors who seek to achieve specific health goals independently of a systematic government-monitored approach to public health. In light of these developments, understanding emerging forms of biopower requires careful scrutiny of biomedical technologies in practice.

Technological Mastery of the Natural World and Human Development

A belief that mastery of the natural world could be achieved through scientific investigation and the application of “machine power” was central to Enlightenment thinking.6 By the 19th century, writers as different as Herbert Spencer and Auguste Comte explicitly associated developments in science and technology with progress and the advancement of human kind. Spencer argued that the degree to which people are able to control the natural world is an indication of the degree of their civilized status,7 and the anthropologist Edward Tylor, in his book Primitive Culture, sought to rank cultures according to their ability in “adapting nature to man’s ends,” with savages at the lowest end of the spectrum and educated peoples of Western Europe at the highest end.8 Of course there were a good number of well-known dissenters to a position that valorized the progress brought about by science and technology, but these people were, without doubt, in the minority.9

Signs of this “honorable” and “audacious” struggle against “brute matter”10