Biogas from Waste and Renewable Resources - Dieter Deublein - E-Book

Biogas from Waste and Renewable Resources E-Book

Dieter Deublein

3,8
120,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

The leading book on the market just got better: With its unique approach covering all aspects of setting up and running a biogas plant, this new edition has been expanded to include recent advances in biomass processing. The author is a key player in the field, who has designed numerous small- and industrial-scale biogas plants, and who is also a long-time lecturer on biogas production, thus combining didactical skill with real-life expertise. As such, he covers both the biological and technical aspects of biogas generation. The full range of biogas substrates and processing modes is explained, from agricultural and industrial waste to marine algae and sediment. On-site use of biogas for conversion into electricity, fuel and heat is also discussed, as are safety and regulatory issues. Many real-life examples of European biogas plants already in operation illustrate the contents, as do numerous schemes, diagrams and summary tables. For this new edition, biogas analytics and quality control required for feeding biogas into natural gas networks are included, as is a completely new chapter on the microbiology of biogas-producing bacterial communities.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern

Seitenzahl: 679

Veröffentlichungsjahr: 2011

Bewertungen
3,8 (16 Bewertungen)
5
6
2
3
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Contents

Preface

Preface to the Second Edition

Symbols and Abbreviations

Acknowledgments

Part One Potential and History General Thoughts about Energy Supply

1 Energy Supply–Today and in the Future

1.1 Primary Energy Sources

1.2 Secondary Energy Sources

1.3 End-Point Energy Sources

1.4 Effective Energy

2 Energy Supply in the Future–Scenarios

3 Potential for Transforming Biomass into End-Point Energy Sources

3.1 Amount of Available Area

3.2 Theoretical Potential

3.3 Technical Potential

3.4 Economic Potential

3.5 Realizable Potential

4 History and Status to Date in Europe

4.1 First Attempts at Using Biogas

4.2 Second Attempts at Using Biogas

4.3 Third Attempts at Applying Biogas

4.4 Status to Date and Perspective in Europe

5 History and Status to Date Worldwide

5.1 History and Status to Date in China

5.2 History and Status to Date in India

5.3 Status to Date in America

5.4 Status to Date in the CIS States

6 General Aspects of the Recovery of Biomass in the Future

Part Two Substrates and Biogas

7 Substrate

7.1 Agricultural Products

7.2 Biowaste from Collections of Residual Waste and Domestic Waste Like Commercial Waste

7.3 Landfill for Residual Waste

7.4 Sewage Sludge and Co-substrate

7.5 Industrial Waste Water

7.6 Waste Grease or Fat

7.7 Cultivation of Algae

7.8 Plankton

7.9 Sediments in the Sea

7.10 Wood, Straw

8 Biogas

8.1 Biogas Compared with Other Methane-Containing Gases

8.2 Detailed Overview of Biogas Components

Part Three Formation of Biogas

9 Biochemistry

10 Bioreactions

10.1 Hydrolysis

10.2 Acidogenic Phase

10.3 Acetogenic Phase

10.4 Methanogenic Phase

11 Process Parameters

11.1 Parameter: Hydrogen Partial Pressure

11.2 Parameter: Concentration of the Microorganisms (Ensilage, Recirculation of Biomass)

11.3 Parameter: Type of Substrate

11.4 Parameter: Specific Surface Area of Material

11.5 Parameter: Disintegration

11.6 Parameter: Cultivation, Mixing, and Volume Load

11.7 Parameter: Light

11.8 Parameter: Temperature

11.9 Parameter: pH

11.10 Parameter: Redox Potential

11.11 Parameter: Nutrients (C : N : P Ratio)

11.12 Parameter: Precipitants (Calcium Carbonate, Magnesium Ammonium Phosphate, Apatite)

11.13 Parameter: Biogas Removal

11.14 Parameter: Inhibitors

11.15 Parameter: Degree of Decomposition

11.16 Parameter: Foaming and Scum Formation

Part Four Microorganisms in Methanogenic Ecosystems

12 Methanogenic Ecosystems

12.1 Ecosystems in the Gastrointestinal Tract of Ruminants

12.2 Ecosystems in the Gastrointestinal System of Herbivores

12.3 Ecosystems in the Intestine of Termites

12.4 Ecosystem in the Soil of a Paddy Field

12.5 Ecosystems in a Biogas Reactor

13 Microorganisms in Methanation

13.1 Protists

13.2 Fungi

13.3 Bacteriophages

13.4 Bacteria and Archaea

Part Five Dangers with Biogas Plants and Laboratory Equipment

14 Guidelines and Regulations

14.1 Regulations Relating to the Construction of Plants

14.2 Biomass and Residue

14.3 Feeding Biogas to the Gas Network

14.4 Risk of Explosion

14.5 Risk of Fire

14.6 Harmful Exhaust Gases

14.7 Noise Protection

14.8 Prevention of Injuries

14.9 Protection from Water

15 The Biogas Laboratory

15.1 Laboratory Digesters with Eudiometers

15.2 Pilot Fermenter

15.3 Larger Pilot Plants for Batchwise or Continuous Fermentation Tests

15.4 Analyses

Part Six Equipment of a Biogas Plant

16 Tanks and Bioreactors

16.1 Brick Tanks

16.2 Reinforced Concrete Tanks

16.3 Tanks of Normal Steel Sheet Metals with an Enamel Layer or Plastic Coating

16.4 Tanks of Stainless Steel

16.5 Ground Basin with Plastic Foil Lining

17 Equipment for Tempering the Substrate

18 Thermal Insulation

19 Agitators

19.1 Mechanical Agitation

19.2 Circulation Pumps

19.3 Gas Injection into the Digestion Tower

19.4 Stirring Effect by Gas Formation

20 Mixing of Biomass and Water

21 Machines to Separate the Liquid from the Biomass

21.1 Belt-type Press

21.2 Filter Press

21.3 Decanters

22 Pipes

22.1 Substrate Pipework

22.2 Gas Pipes

23 Pumps

23.1 Submerged Centrifugal Pump, Submerged Motor Centrifugal Pump

23.2 Eccentric Screw Pump, Eccentric Rotor Pump

24 Measurement, Control, and Automation Technology

24.1 Mechanisms for Monitoring and Regulation

24.2 Equipment to Guarantee Operating Safety

25 Exhaust Air Cleaning

Part Seven Upstream and Downstream Processing

26 Transportation and Storage of the Biomass

26.1 Transport and Means of Transport

26.2 Storage Silos

27 Process Technology for Upstream Processing

27.1 Adjustment of the Water Content

27.2 Removal of Impurities/Harmful Substances (Figure 27.3)

27.3 Comminution

27.4 Hygienization

27.5 Disintegration

28 Feeding

28.1 Feeding with Substrate

28.2 Feeding with Additives

29 Digested Residue

29.1 Pressing of the Fermentation Residue

29.2 Drying

30 Wastewater

Part Eight Fermentation–Agricultural Plant

31 Batchwise and Continuous Processes Without Separators

31.1 Floating Cup Reactor

31.2 Fixed-Dome Reactor

31.3 Deenbandhu Model

31.4 Plastic Bag Reactor and Plastic Silo Reactor

31.5 Cavern Plants

31.6 One-Stage Agricultural Biogas Plants

32 Existing Installations from Different Suppliers

32.1 WABIO-Vaasa Process

32.2 DUT Process

32.3 Entec Process

32.4 Bigadan™ Process (Formerly Krüger Process)

32.5 Valorga™ Process

33 Operation of a Plant Without Separation Equipment

33.1 Start-up

33.2 Start-up of the Plant

33.3 Operation of the Plant

34 Benefits of a Biogas Plant

35 Typical Design Calculation for an Agricultural Biogas Plant

36 Economics Calculations for Biogas Plants

36.1 Capital-Bound Costs Per Year in US$

36.2 Consumption-Bound Costs Per Year

36.3 Operation-Bound Costs Per Year

36.4 Other Costs Per Year

36.5 Total Costs

36.6 Income Per Year

36.7 Annual Revenue of the Biogas Plant

37 Efficiency

Part Nine Fermentation–Industrial Plants Fermentation

38 Installation with Substrate Dilution and Subsequent Water Separation

38.1 Process Engineering

38.2 Implemented Installations of Different Manufacturers

39 Installation with Biomass Accumulation

39.1 Sewage Sludge Digestion Tower Installation

39.2 Sludge-Bed Reactor

39.3 Reactors with Immobilized Microorganisms

40 Plants with Separation of Non-Hydrolyzable Biomass

40.1 Process Engineering and Equipment Construction

40.2 Efficiency

40.3 Plant Installations

41 Percolation Process

41.1 Dry Fermentation Process in a Stack

41.2 AN/Biothane™ Process

41.3 Prethane™/Rudad™–Biopaq™ Process or ANM Process

41.4 Foil Hose Process

41.5 IMK Process

41.6 Dry Anaerobic Composting

41.7 Aerobic–Anaerobic–Aerobic Process (3A Process)

41.8 Fermentation Channel Process

42 Special Plant Installations

42.1 Combined Fermentation of Sewage Sludge and Biowaste

42.2 Biowaste Plants

42.3 Purification of Industrial Wastewater

Part Ten Biogas Storage and Preparation

43 Biogasholder

43.1 Biogasholder Types

43.2 Gas Flares

44 Gas Preparation

44.1 Removal of Hydrogen Sulfide

44.2 Removal of the Carbon Dioxide

44.3 Removal of Oxygen

44.4 Removal of Water

44.5 Removal of Ammonia

44.6 Removal of Siloxanes

45 Quantities of Gas and Measurement of Gas Quality

46 Liquefaction or Compression of the Biogas

46.1 Liquefaction

46.2 Compression

Part Eleven Biogas Utilization Utilization of Biogas to Generate Electric Power and Heat

47 Utilization of Gas Exclusively to Generate Heat

48 Utilization of Gas to Generate Current and Heat

48.1 Supply of Current to the Public Power Network

48.2 Heat

48.3 Combined Heat and Power Generator (CHP)

48.4 Lessons Learnt from Experience

48.5 Economy

49 Biogas for Feeding into the Natural Gas Network

49.1 Biogas for Feeding into the Natural Gas Network in Switzerland

49.2 Biogas for Feeding into the Natural Gas Network in Sweden

49.3 Biogas for Feeding into the Natural Gas Network in Germany

50 Biogas as Fuel for Vehicles

50.1 Requirements on Gas When Used as Fuel

50.2 Vehicles

50.3 Gasoline Station

Literature

Index

The Authors

Prof. Dr.-Ing. Dieter DeubleinDeublein ConsultingInternational ManagementRitzingerstr. 1994469 DeggendorfGermany

Dipl.-Ing. A. Steinhauserroute du Praz-Riond 18Tower A #11-081564 DomdidierSwitzerland

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form–by photoprinting, microfilm, or any other means–nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition Toppan Best-set Premedia Ltd., Hong Kong

Printing and Bookbinding Strauss GmbH, Mörlenbach

Cover Design Adam Design, Weinheim

Preface

Rising crude oil prices force us to think more about alternative energies. Among different technologies, solar energy is considered most effective even with regard to the environmental protection of plants. Visionaries think that biomass will probably convert solar energy best and will substitute all fossil energy resources in future.

In recent decades, many companies have rigged many biogas plants worldwide. A lot of experience was gained, leading to continuous process optimization of anaerobic fermentation and the development of new and more efficient applications. Overall, the basic knowledge of biogas production, the microorganisms involved, and the biochemical processes was widely extended.

This knowledge and the new ideas have now been put together as a basis to lead and initiate discussions. Since the technological solutions of technical problems in the field of anaerobic digestion of waste water, sewage sludge, and agricultural products are starting slowly to drift apart, without any valid reason, this book is meant to present a consolidation of knowledge in the different fields, so that learning can be leveraged more easily and applications can be harmonized.

The book comprises detailed descriptions of all the process steps to be followed during biogas production, from the preparation of a suitable substrate to the use of biogas, the end product. Each individual stage is assessed and discussed in detail, taking the different aspects such as application and potential into account. Biological, chemical, and engineering processes are detailed in the same way as apparatus, automatic control, energy, and safety engineering. With the help of this book, both tyros and experts should be able to learn or refresh their knowledge, due to its concentrated form with a simple and clear structure and many illustrations. The book can also be used as a reference book, given its many tables and large index. It is strongly recommended for planners and operators of biogas plants as it gives good advice to maximize the potential of the plant.

Originally I collected data and information about biogas plants just out of curiosity. I wanted to know all the details in order to teach my students at the University of Applied Sciences in Munich comprehensively. For about 5 years I surfed the Internet, screened and read many books, patents, and magazines and also approached many companies and manufacturers of plant components who kindly shared their knowledge with me. Mrs. Dipl.-Ing. Angelika Steinhauser assisted me in writing this book. The first impulse to publish all the knowledge in this book was been clearly given by Mr. Dipl.-Ing. Steffen Steinhauser. We, the authors, thank him cordially for this. We also thank Dr. F. Weinreich of Wiley-VCH Verlag GmbH & Co KGaA for supporting this idea. Last, but not least, I would like to thank my wife and my son. Without their continuous motivation and very active support, this book would never have been finished.

Preface to the Second Edition

Only a few years ago, energy made of biogas was still only an idea, which started slowly to be implemented in a few countries, mainly in Asia and Central Europe. In the past 2 years, however, it has become a topic which is talked about worldwide. All over the world small biogas plants are starting up and food producers and large agricultural companies have started to produce energy from waste.

Research has shifted and is now largely focusing on the biology. New microorganisms have been identified which are effective in methanogenic ecosystems. Extensive analyses were carried out particularly to understand specific methanogenic ecosystems such as those found in the intestinal tract of termites able to decompose cellulose. Further, it was questioned whether indeed the methanogenic microorganisms are solely critical. Instead, the protists on which the methanogens kind of ride may be critical. Given the complexity of this topic, a whole new chapter, “ Methanogenic Ecosystems, ” was added which presents the current knowledge in that area.

Within the last few years, many process technologies mentioned in the first edition have been approved. Not all were pursued and these are not included in this second edition.

Further, this second edition is enhanced by the results of new studies which were conducted at the biogas institute of Prof. Dr.-Ing. Deublein.

It now also provides an overview of laboratory analyses conducted in the laboratories of the plant owners to optimize the biogas yield and of additives preferred in industry. This knowledge is of great importance as biogas plants today are often large plants providing megawatts of power which are fed into the existing natural gas networks. For those plants it is critical that the biology always works at its optimum and that the biogas yield is as high as possible, which can be influenced by various additives such as enzymes and trace minerals.

One of the chapters, originally covering the relevant laws and regulations in Germany, was shortened without cutting any of the questionnaires, which should be followed to provide sufficient safety of biogas plants.

The authors

Acknowledgments

The following companies, institutions, and individuals have kindly provided photographs and other illustrations. Their support is gratefully acknowledged.

Abschlussbericht Projekt 4: Verbesserter Abbau von

Klärschlämmen durch Zellaufschluss der DFG-Forschergruppe “Biologische Prozesse mit dispersen Feststoffen”–DFG Figure 27.7a and b

Abschlussbericht Projekt 4: Verbesserter Abbau von Klärschlämmen durch Zellaufschluss der DFG-Forschergruppe “Biologische Prozesse mit dispersen Feststoffen”, Germany Figure 39.16

AgriKomp GmbH Figure 19.1(e)

AgriKomp GmbH Figure 27.2c

AgriKomp GmbH Figure 29.2

AgriKomp GmbH Figure 31.4

Awite Bioenergie GmbH Figure 24.1

BAG-Budissa-Agroservice GmbH Figure 26.1

Bekon-Energy GmbH Figure 41.1

Bioferm GmbH Figure 43.1f

Burkhard Meiners, AgroEnergien Figure 29.3

Cenotec GmbH, Greven Figure 16.6(c)

Cenotec GmbH, Greven Figure 31.5a and b

Cenotec GmbH, Greven Figure 43.1a, b, d

Coop, Switzerland (www.coop.ch) Figure 16.6(a)

Daad Saffarini, Associate Professor, University of Wisconsin-Milwaukee, Department of Biological Sciences Figure 13.5

Dr. W. Schmidt, Zuchtleiter Inland der KWS SAAT AG Figure 3.7a

Dr.-Ing. St. Battenberg, Dissertation, Carola-Wilhelmina University, Braunschweig, 2000 Figure 13.4d

Filox Filtertechnik GmbH Figure 21.1(b)

Flottweg GmbH Figure 21.1(c)

“Four-in-One” Biogas System in Northern China Figure 5.3 a–d

Gerardo P. Baron Figure 16.6(e)

Hexis AG, Winterthur, Switzerland Figure 48.14

Holger D ö bert, Radolfzell Figure 8.3

home.landtag.nrw.de/mdl/reiner.priggen/Lathen-AbholungausgegorenesMaterial.jpg Figure 29.1

ICA Japan (www.icajapan.org) Figure 5.3g

ifm-geomar Figure 7.7

Ishii iron works Ltd Figure 43.1e

Klein Abwasser-und Schlammtechnik GmbH Figure 21.1(a)

Kompogas AG Figure 48.1b

Landratsamt Freising (www.kreis-fs.de) Figure 43.2

Max-Planck-Institut f ü r Z ü chtungsforschung Figure 3.7b

MDE Dezentrale Energiesysteme GmbH Figure 48.1e

MTU-CFC GmbH Figure 48.1d

Pondus-Verfahren GmbH Figure 11.22b

Protego Report No. 27/2003 Figure 24.4

RECK-Technik GmbH & Co. KG Figure 11.22a

Ritter Apparatebau GmbH Figure 15.5

Schmack Biogas AG Figure 27.2e

Schmack Biogas AG, Schwandorf Figure 16.6(b)

Scientific Engineering Centre “Biomass,” Kiev Figure 5.3h

Sicherheitsregeln f ü r landwirtschaftliche Biogasanlagen der landwirtschaftlichen Berufsgenossenschaften Ausgabe 2002 Figure 14.2

Siemens AG Figure 48.1c

St. Battenberg, Dissertation, Carola-Wilhelmina University, Braunschweig, 2000; available at www-public.tu-bs.deFigure 39.15

Stetter & R. Rachel, Universit ä t Regensburg Figure 13.4b, c

SUMA GmbH Figure 19.1(d)

SunTechnics Figure 5.3f

Thoeni Industriebetriebe GmbH, Austria Figure 16.6(d)

Turbec SpA Figure 48.1f

U.T.S. Umwelttechnik S ü d GmbH Figure 27.2d

Vorspann-Technik GmbH & Co. KG Figure 16.3(d) and (e)

VTA Engineering und Umwelttechnik GmbH Figure 48.1g

WELtec BioPower GmbH Figure 19.1(a)

www.mvm.uni-karlsruhe.deFigure 3.7c

www.solarenergie.co.zaFigure 5.3e

Part One

Potential and History

General Thoughts about Energy Supply

Human beings are the only animals with the ability to ignite and use a fire. This advantage has been important for the growth of humankind, particularly during the past few decades, when the rapid rate of innovation in industry was especially facilitated by the immense richness of oil. Today, thousands of oil platforms exist globally, which provide the oil for about 50 000 kWh of energy per year. Yearly, around US$10 bn are spent in drilling for new oilfields to secure the supply of oil and hence the basis for industrial growth in the future.

However, as with all fossil resources, the quantity of oil is limited and will not last forever. For sure there will be a time when all the existing accessible oil fields will have been exploited. What is then going to happen to humankind?

May the same occur as is observed in Nature? Not only in animals but also in plants there are sudden “explosions of populations.” Such growth naturally stops, however, as soon as a source of life runs dry. The organisms start to suffer from deficiency symptoms and become dominated or eaten by stronger organisms.

How will human beings generate energy when all the oil resources that we benefit from today have been fully consumed? There is as yet no clear answer to this question. But regardless of what the answer may be, it is clear that the humankind will always want to continue to build huge inventories of energy. With the declining quantity of fossil fuels, it is critical today to focus on sustained economic use of existing limited resources and on identifying new technologies and renewable resources, for example, biomass, for future energy supply.

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!