120,99 €
The leading book on the market just got better: With its unique approach covering all aspects of setting up and running a biogas plant, this new edition has been expanded to include recent advances in biomass processing. The author is a key player in the field, who has designed numerous small- and industrial-scale biogas plants, and who is also a long-time lecturer on biogas production, thus combining didactical skill with real-life expertise. As such, he covers both the biological and technical aspects of biogas generation. The full range of biogas substrates and processing modes is explained, from agricultural and industrial waste to marine algae and sediment. On-site use of biogas for conversion into electricity, fuel and heat is also discussed, as are safety and regulatory issues. Many real-life examples of European biogas plants already in operation illustrate the contents, as do numerous schemes, diagrams and summary tables. For this new edition, biogas analytics and quality control required for feeding biogas into natural gas networks are included, as is a completely new chapter on the microbiology of biogas-producing bacterial communities.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 679
Veröffentlichungsjahr: 2011
Contents
Preface
Preface to the Second Edition
Symbols and Abbreviations
Acknowledgments
Part One Potential and History General Thoughts about Energy Supply
1 Energy Supply–Today and in the Future
1.1 Primary Energy Sources
1.2 Secondary Energy Sources
1.3 End-Point Energy Sources
1.4 Effective Energy
2 Energy Supply in the Future–Scenarios
3 Potential for Transforming Biomass into End-Point Energy Sources
3.1 Amount of Available Area
3.2 Theoretical Potential
3.3 Technical Potential
3.4 Economic Potential
3.5 Realizable Potential
4 History and Status to Date in Europe
4.1 First Attempts at Using Biogas
4.2 Second Attempts at Using Biogas
4.3 Third Attempts at Applying Biogas
4.4 Status to Date and Perspective in Europe
5 History and Status to Date Worldwide
5.1 History and Status to Date in China
5.2 History and Status to Date in India
5.3 Status to Date in America
5.4 Status to Date in the CIS States
6 General Aspects of the Recovery of Biomass in the Future
Part Two Substrates and Biogas
7 Substrate
7.1 Agricultural Products
7.2 Biowaste from Collections of Residual Waste and Domestic Waste Like Commercial Waste
7.3 Landfill for Residual Waste
7.4 Sewage Sludge and Co-substrate
7.5 Industrial Waste Water
7.6 Waste Grease or Fat
7.7 Cultivation of Algae
7.8 Plankton
7.9 Sediments in the Sea
7.10 Wood, Straw
8 Biogas
8.1 Biogas Compared with Other Methane-Containing Gases
8.2 Detailed Overview of Biogas Components
Part Three Formation of Biogas
9 Biochemistry
10 Bioreactions
10.1 Hydrolysis
10.2 Acidogenic Phase
10.3 Acetogenic Phase
10.4 Methanogenic Phase
11 Process Parameters
11.1 Parameter: Hydrogen Partial Pressure
11.2 Parameter: Concentration of the Microorganisms (Ensilage, Recirculation of Biomass)
11.3 Parameter: Type of Substrate
11.4 Parameter: Specific Surface Area of Material
11.5 Parameter: Disintegration
11.6 Parameter: Cultivation, Mixing, and Volume Load
11.7 Parameter: Light
11.8 Parameter: Temperature
11.9 Parameter: pH
11.10 Parameter: Redox Potential
11.11 Parameter: Nutrients (C : N : P Ratio)
11.12 Parameter: Precipitants (Calcium Carbonate, Magnesium Ammonium Phosphate, Apatite)
11.13 Parameter: Biogas Removal
11.14 Parameter: Inhibitors
11.15 Parameter: Degree of Decomposition
11.16 Parameter: Foaming and Scum Formation
Part Four Microorganisms in Methanogenic Ecosystems
12 Methanogenic Ecosystems
12.1 Ecosystems in the Gastrointestinal Tract of Ruminants
12.2 Ecosystems in the Gastrointestinal System of Herbivores
12.3 Ecosystems in the Intestine of Termites
12.4 Ecosystem in the Soil of a Paddy Field
12.5 Ecosystems in a Biogas Reactor
13 Microorganisms in Methanation
13.1 Protists
13.2 Fungi
13.3 Bacteriophages
13.4 Bacteria and Archaea
Part Five Dangers with Biogas Plants and Laboratory Equipment
14 Guidelines and Regulations
14.1 Regulations Relating to the Construction of Plants
14.2 Biomass and Residue
14.3 Feeding Biogas to the Gas Network
14.4 Risk of Explosion
14.5 Risk of Fire
14.6 Harmful Exhaust Gases
14.7 Noise Protection
14.8 Prevention of Injuries
14.9 Protection from Water
15 The Biogas Laboratory
15.1 Laboratory Digesters with Eudiometers
15.2 Pilot Fermenter
15.3 Larger Pilot Plants for Batchwise or Continuous Fermentation Tests
15.4 Analyses
Part Six Equipment of a Biogas Plant
16 Tanks and Bioreactors
16.1 Brick Tanks
16.2 Reinforced Concrete Tanks
16.3 Tanks of Normal Steel Sheet Metals with an Enamel Layer or Plastic Coating
16.4 Tanks of Stainless Steel
16.5 Ground Basin with Plastic Foil Lining
17 Equipment for Tempering the Substrate
18 Thermal Insulation
19 Agitators
19.1 Mechanical Agitation
19.2 Circulation Pumps
19.3 Gas Injection into the Digestion Tower
19.4 Stirring Effect by Gas Formation
20 Mixing of Biomass and Water
21 Machines to Separate the Liquid from the Biomass
21.1 Belt-type Press
21.2 Filter Press
21.3 Decanters
22 Pipes
22.1 Substrate Pipework
22.2 Gas Pipes
23 Pumps
23.1 Submerged Centrifugal Pump, Submerged Motor Centrifugal Pump
23.2 Eccentric Screw Pump, Eccentric Rotor Pump
24 Measurement, Control, and Automation Technology
24.1 Mechanisms for Monitoring and Regulation
24.2 Equipment to Guarantee Operating Safety
25 Exhaust Air Cleaning
Part Seven Upstream and Downstream Processing
26 Transportation and Storage of the Biomass
26.1 Transport and Means of Transport
26.2 Storage Silos
27 Process Technology for Upstream Processing
27.1 Adjustment of the Water Content
27.2 Removal of Impurities/Harmful Substances (Figure 27.3)
27.3 Comminution
27.4 Hygienization
27.5 Disintegration
28 Feeding
28.1 Feeding with Substrate
28.2 Feeding with Additives
29 Digested Residue
29.1 Pressing of the Fermentation Residue
29.2 Drying
30 Wastewater
Part Eight Fermentation–Agricultural Plant
31 Batchwise and Continuous Processes Without Separators
31.1 Floating Cup Reactor
31.2 Fixed-Dome Reactor
31.3 Deenbandhu Model
31.4 Plastic Bag Reactor and Plastic Silo Reactor
31.5 Cavern Plants
31.6 One-Stage Agricultural Biogas Plants
32 Existing Installations from Different Suppliers
32.1 WABIO-Vaasa Process
32.2 DUT Process
32.3 Entec Process
32.4 Bigadan™ Process (Formerly Krüger Process)
32.5 Valorga™ Process
33 Operation of a Plant Without Separation Equipment
33.1 Start-up
33.2 Start-up of the Plant
33.3 Operation of the Plant
34 Benefits of a Biogas Plant
35 Typical Design Calculation for an Agricultural Biogas Plant
36 Economics Calculations for Biogas Plants
36.1 Capital-Bound Costs Per Year in US$
36.2 Consumption-Bound Costs Per Year
36.3 Operation-Bound Costs Per Year
36.4 Other Costs Per Year
36.5 Total Costs
36.6 Income Per Year
36.7 Annual Revenue of the Biogas Plant
37 Efficiency
Part Nine Fermentation–Industrial Plants Fermentation
38 Installation with Substrate Dilution and Subsequent Water Separation
38.1 Process Engineering
38.2 Implemented Installations of Different Manufacturers
39 Installation with Biomass Accumulation
39.1 Sewage Sludge Digestion Tower Installation
39.2 Sludge-Bed Reactor
39.3 Reactors with Immobilized Microorganisms
40 Plants with Separation of Non-Hydrolyzable Biomass
40.1 Process Engineering and Equipment Construction
40.2 Efficiency
40.3 Plant Installations
41 Percolation Process
41.1 Dry Fermentation Process in a Stack
41.2 AN/Biothane™ Process
41.3 Prethane™/Rudad™–Biopaq™ Process or ANM Process
41.4 Foil Hose Process
41.5 IMK Process
41.6 Dry Anaerobic Composting
41.7 Aerobic–Anaerobic–Aerobic Process (3A Process)
41.8 Fermentation Channel Process
42 Special Plant Installations
42.1 Combined Fermentation of Sewage Sludge and Biowaste
42.2 Biowaste Plants
42.3 Purification of Industrial Wastewater
Part Ten Biogas Storage and Preparation
43 Biogasholder
43.1 Biogasholder Types
43.2 Gas Flares
44 Gas Preparation
44.1 Removal of Hydrogen Sulfide
44.2 Removal of the Carbon Dioxide
44.3 Removal of Oxygen
44.4 Removal of Water
44.5 Removal of Ammonia
44.6 Removal of Siloxanes
45 Quantities of Gas and Measurement of Gas Quality
46 Liquefaction or Compression of the Biogas
46.1 Liquefaction
46.2 Compression
Part Eleven Biogas Utilization Utilization of Biogas to Generate Electric Power and Heat
47 Utilization of Gas Exclusively to Generate Heat
48 Utilization of Gas to Generate Current and Heat
48.1 Supply of Current to the Public Power Network
48.2 Heat
48.3 Combined Heat and Power Generator (CHP)
48.4 Lessons Learnt from Experience
48.5 Economy
49 Biogas for Feeding into the Natural Gas Network
49.1 Biogas for Feeding into the Natural Gas Network in Switzerland
49.2 Biogas for Feeding into the Natural Gas Network in Sweden
49.3 Biogas for Feeding into the Natural Gas Network in Germany
50 Biogas as Fuel for Vehicles
50.1 Requirements on Gas When Used as Fuel
50.2 Vehicles
50.3 Gasoline Station
Literature
Index
The Authors
Prof. Dr.-Ing. Dieter DeubleinDeublein ConsultingInternational ManagementRitzingerstr. 1994469 DeggendorfGermany
Dipl.-Ing. A. Steinhauserroute du Praz-Riond 18Tower A #11-081564 DomdidierSwitzerland
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form–by photoprinting, microfilm, or any other means–nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Composition Toppan Best-set Premedia Ltd., Hong Kong
Printing and Bookbinding Strauss GmbH, Mörlenbach
Cover Design Adam Design, Weinheim
Preface
Rising crude oil prices force us to think more about alternative energies. Among different technologies, solar energy is considered most effective even with regard to the environmental protection of plants. Visionaries think that biomass will probably convert solar energy best and will substitute all fossil energy resources in future.
In recent decades, many companies have rigged many biogas plants worldwide. A lot of experience was gained, leading to continuous process optimization of anaerobic fermentation and the development of new and more efficient applications. Overall, the basic knowledge of biogas production, the microorganisms involved, and the biochemical processes was widely extended.
This knowledge and the new ideas have now been put together as a basis to lead and initiate discussions. Since the technological solutions of technical problems in the field of anaerobic digestion of waste water, sewage sludge, and agricultural products are starting slowly to drift apart, without any valid reason, this book is meant to present a consolidation of knowledge in the different fields, so that learning can be leveraged more easily and applications can be harmonized.
The book comprises detailed descriptions of all the process steps to be followed during biogas production, from the preparation of a suitable substrate to the use of biogas, the end product. Each individual stage is assessed and discussed in detail, taking the different aspects such as application and potential into account. Biological, chemical, and engineering processes are detailed in the same way as apparatus, automatic control, energy, and safety engineering. With the help of this book, both tyros and experts should be able to learn or refresh their knowledge, due to its concentrated form with a simple and clear structure and many illustrations. The book can also be used as a reference book, given its many tables and large index. It is strongly recommended for planners and operators of biogas plants as it gives good advice to maximize the potential of the plant.
Originally I collected data and information about biogas plants just out of curiosity. I wanted to know all the details in order to teach my students at the University of Applied Sciences in Munich comprehensively. For about 5 years I surfed the Internet, screened and read many books, patents, and magazines and also approached many companies and manufacturers of plant components who kindly shared their knowledge with me. Mrs. Dipl.-Ing. Angelika Steinhauser assisted me in writing this book. The first impulse to publish all the knowledge in this book was been clearly given by Mr. Dipl.-Ing. Steffen Steinhauser. We, the authors, thank him cordially for this. We also thank Dr. F. Weinreich of Wiley-VCH Verlag GmbH & Co KGaA for supporting this idea. Last, but not least, I would like to thank my wife and my son. Without their continuous motivation and very active support, this book would never have been finished.
Preface to the Second Edition
Only a few years ago, energy made of biogas was still only an idea, which started slowly to be implemented in a few countries, mainly in Asia and Central Europe. In the past 2 years, however, it has become a topic which is talked about worldwide. All over the world small biogas plants are starting up and food producers and large agricultural companies have started to produce energy from waste.
Research has shifted and is now largely focusing on the biology. New microorganisms have been identified which are effective in methanogenic ecosystems. Extensive analyses were carried out particularly to understand specific methanogenic ecosystems such as those found in the intestinal tract of termites able to decompose cellulose. Further, it was questioned whether indeed the methanogenic microorganisms are solely critical. Instead, the protists on which the methanogens kind of ride may be critical. Given the complexity of this topic, a whole new chapter, “ Methanogenic Ecosystems, ” was added which presents the current knowledge in that area.
Within the last few years, many process technologies mentioned in the first edition have been approved. Not all were pursued and these are not included in this second edition.
Further, this second edition is enhanced by the results of new studies which were conducted at the biogas institute of Prof. Dr.-Ing. Deublein.
It now also provides an overview of laboratory analyses conducted in the laboratories of the plant owners to optimize the biogas yield and of additives preferred in industry. This knowledge is of great importance as biogas plants today are often large plants providing megawatts of power which are fed into the existing natural gas networks. For those plants it is critical that the biology always works at its optimum and that the biogas yield is as high as possible, which can be influenced by various additives such as enzymes and trace minerals.
One of the chapters, originally covering the relevant laws and regulations in Germany, was shortened without cutting any of the questionnaires, which should be followed to provide sufficient safety of biogas plants.
The authors
Acknowledgments
The following companies, institutions, and individuals have kindly provided photographs and other illustrations. Their support is gratefully acknowledged.
Abschlussbericht Projekt 4: Verbesserter Abbau von
Klärschlämmen durch Zellaufschluss der DFG-Forschergruppe “Biologische Prozesse mit dispersen Feststoffen”–DFG Figure 27.7a and b
Abschlussbericht Projekt 4: Verbesserter Abbau von Klärschlämmen durch Zellaufschluss der DFG-Forschergruppe “Biologische Prozesse mit dispersen Feststoffen”, Germany Figure 39.16
AgriKomp GmbH Figure 19.1(e)
AgriKomp GmbH Figure 27.2c
AgriKomp GmbH Figure 29.2
AgriKomp GmbH Figure 31.4
Awite Bioenergie GmbH Figure 24.1
BAG-Budissa-Agroservice GmbH Figure 26.1
Bekon-Energy GmbH Figure 41.1
Bioferm GmbH Figure 43.1f
Burkhard Meiners, AgroEnergien Figure 29.3
Cenotec GmbH, Greven Figure 16.6(c)
Cenotec GmbH, Greven Figure 31.5a and b
Cenotec GmbH, Greven Figure 43.1a, b, d
Coop, Switzerland (www.coop.ch) Figure 16.6(a)
Daad Saffarini, Associate Professor, University of Wisconsin-Milwaukee, Department of Biological Sciences Figure 13.5
Dr. W. Schmidt, Zuchtleiter Inland der KWS SAAT AG Figure 3.7a
Dr.-Ing. St. Battenberg, Dissertation, Carola-Wilhelmina University, Braunschweig, 2000 Figure 13.4d
Filox Filtertechnik GmbH Figure 21.1(b)
Flottweg GmbH Figure 21.1(c)
“Four-in-One” Biogas System in Northern China Figure 5.3 a–d
Gerardo P. Baron Figure 16.6(e)
Hexis AG, Winterthur, Switzerland Figure 48.14
Holger D ö bert, Radolfzell Figure 8.3
home.landtag.nrw.de/mdl/reiner.priggen/Lathen-AbholungausgegorenesMaterial.jpg Figure 29.1
ICA Japan (www.icajapan.org) Figure 5.3g
ifm-geomar Figure 7.7
Ishii iron works Ltd Figure 43.1e
Klein Abwasser-und Schlammtechnik GmbH Figure 21.1(a)
Kompogas AG Figure 48.1b
Landratsamt Freising (www.kreis-fs.de) Figure 43.2
Max-Planck-Institut f ü r Z ü chtungsforschung Figure 3.7b
MDE Dezentrale Energiesysteme GmbH Figure 48.1e
MTU-CFC GmbH Figure 48.1d
Pondus-Verfahren GmbH Figure 11.22b
Protego Report No. 27/2003 Figure 24.4
RECK-Technik GmbH & Co. KG Figure 11.22a
Ritter Apparatebau GmbH Figure 15.5
Schmack Biogas AG Figure 27.2e
Schmack Biogas AG, Schwandorf Figure 16.6(b)
Scientific Engineering Centre “Biomass,” Kiev Figure 5.3h
Sicherheitsregeln f ü r landwirtschaftliche Biogasanlagen der landwirtschaftlichen Berufsgenossenschaften Ausgabe 2002 Figure 14.2
Siemens AG Figure 48.1c
St. Battenberg, Dissertation, Carola-Wilhelmina University, Braunschweig, 2000; available at www-public.tu-bs.deFigure 39.15
Stetter & R. Rachel, Universit ä t Regensburg Figure 13.4b, c
SUMA GmbH Figure 19.1(d)
SunTechnics Figure 5.3f
Thoeni Industriebetriebe GmbH, Austria Figure 16.6(d)
Turbec SpA Figure 48.1f
U.T.S. Umwelttechnik S ü d GmbH Figure 27.2d
Vorspann-Technik GmbH & Co. KG Figure 16.3(d) and (e)
VTA Engineering und Umwelttechnik GmbH Figure 48.1g
WELtec BioPower GmbH Figure 19.1(a)
www.mvm.uni-karlsruhe.deFigure 3.7c
www.solarenergie.co.zaFigure 5.3e
Part One
Potential and History
General Thoughts about Energy Supply
Human beings are the only animals with the ability to ignite and use a fire. This advantage has been important for the growth of humankind, particularly during the past few decades, when the rapid rate of innovation in industry was especially facilitated by the immense richness of oil. Today, thousands of oil platforms exist globally, which provide the oil for about 50 000 kWh of energy per year. Yearly, around US$10 bn are spent in drilling for new oilfields to secure the supply of oil and hence the basis for industrial growth in the future.
However, as with all fossil resources, the quantity of oil is limited and will not last forever. For sure there will be a time when all the existing accessible oil fields will have been exploited. What is then going to happen to humankind?
May the same occur as is observed in Nature? Not only in animals but also in plants there are sudden “explosions of populations.” Such growth naturally stops, however, as soon as a source of life runs dry. The organisms start to suffer from deficiency symptoms and become dominated or eaten by stronger organisms.
How will human beings generate energy when all the oil resources that we benefit from today have been fully consumed? There is as yet no clear answer to this question. But regardless of what the answer may be, it is clear that the humankind will always want to continue to build huge inventories of energy. With the declining quantity of fossil fuels, it is critical today to focus on sustained economic use of existing limited resources and on identifying new technologies and renewable resources, for example, biomass, for future energy supply.
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!