0,99 €
This study is concerned with the question if existence is evidence of eternal recurrence, that a current observer is within a cyclic world, if the past is infinite. Michael Huemer proposed a proof of existence being evidence of immortality using a Bayesian approach, which is discussed, as well as various counter arguments. This study then uses transition systems, a non-Bayesian approach, to prove various results about worlds that can be described by them. It is proved that in transition systems with an infinite past and a finite state set, where time can be discretely subdivided, eternal recurrence is the case for every observer in a world described by such a system. Finally, the reasoning, potential and actual counter arguments, consequences, and future research are considered.
Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:
Seitenzahl: 30
Veröffentlichungsjahr: 2024
This study is concerned with the question if existence is evidence of eternal recurrence, that a current observer is within a cyclic world, if the past is infinite. Michael Huemer’s proposed proof of existence being evidence of immortality using a Bayesian approach is discussed, as well as various counter arguments. This study then uses transition systems, a non-Bayesian approach, to prove various results about worlds that can be described by them. It is proved that in transition systems with an infinite past and a finite state set, where time can be discretely subdivided, eternal recurrence is the case for every observer in a world described by such a system. Finally, the reasoning, potential and actual counter arguments, consequences, and future research are considered.
Denna studie behandlar frågan om existensen är ett bevis på evig återkomst, att en nuvarande observatör befinner sig i en cyklisk värld, om det förflutna är oändligt. Michael Huemers föreslagna bevis för att existensen är ett bevis på odödlighet, som använder ett bayesianskt tillvägagångssätt, diskuteras, liksom olika motargument. I denna studie används övergångssystem, ett icke-bayesianskt tillvägagångssätt, för att bevisa olika resultat om världar som kan beskrivas med hjälp av dem. Det bevisas att i övergångssystem med ett oändligt förflutet och en ändlig tillståndsmängd, där tiden kan delas upp diskret, är evig återkomst fallet för varje observatör i en värld som beskrivs av ett sådant system. Slutligen behandlas resonemangen, faktiska och potentiella motargument, konsekvenser, och framtida forskning.
Acknowledgements
1 Introduction
1.1 Background and previous studies
1.2 Purpose and research question
1.3 Disposition
2 Transition systems with observers
2.1 Transition systems
2.2 Proofs about transition systems with observers
3 Discussion
4 References
I would like to thank my wife Yuliya Hagberg for support throughout the process. I would also like to thank David Madsen for the many years of philosophical discussion concerning this and other topics, my supervisor Nicholas Smith for support and feedback, and my fellow student Adrian Blivik for feedback. I first wrote about this topic in a book “Enhetsmallen” (2018) and outlined the proofs that are carried out here (except for theorem (6)), where I also for example discussed multiple dimensions of time. Later, I wrote about the absurdity of ‘the next state’ of the world to not be defined in “Collected papers on finitist mathematics and phenomenalism” (2023).
Time within metaphysics, in general, has been devoted a lot of attention over the years (Gale, 2016).
One inquiry about time is whether everything in the world, that is the world we live in, happens again. Eternal recurrence is the idea that everything in the world repeats itself an infinite amount of times, which is something that has been stated by Hindu scholars, Seneca, Nietzsche, and other thinkers (Teresi, 2010, p.174; Huemer, 2021, p.4). However, Nietzsche might only have used eternal recurrence as a metaphor (Anderson, 2024).